Deux types de surfaces, d'acier et de polyester revêtu de polyester revêtu d'une couche de nanoparticules de silice, ont été étudiés. Les deux surfaces ont été exposés à la lumière du soleil, qui a été trouvé pour provoquer des changements importants dans la chimie et à l'échelle nanométrique topographie de la surface.
La corrosion des surfaces métalliques est très répandue dans l'environnement et est une grande préoccupation dans de nombreux domaines, y compris les militaires, les transports, l'aviation, la construction et les industries alimentaires, entre autres. Polyester et revêtements contenant à la fois le polyester et des nanoparticules de silice (SiO 2 SNM) ont été largement utilisés pour protéger les substrats d'acier contre la corrosion. Dans cette étude, nous avons utilisé des rayons X spectroscopie photoélectronique, la réflexion totale atténuée infrarouge micro-spectroscopie, mesures d'angle de contact avec l'eau, le profilage optique et la microscopie à force atomique pour fournir un aperçu de la façon dont l'exposition à la lumière du soleil peut provoquer des changements dans le micro et l'intégrité à l'échelle nanométrique des revêtements. Aucun changement significatif de la surface des micro-topographie a été détectée en utilisant la profilométrie optique, cependant, à l'échelle nanométrique des changements statistiquement significatifs à la surface ont été détectés en utilisant la microscopie à force atomique. Analyse de la spectroscopie photoélectronique à rayons X et de la réflexion totale atténuée micro infrarougeles données de spectroscopie a révélé que la dégradation des groupes ester était produite par l' exposition à la lumière ultraviolette pour former · COO, C 2 H ·, · -O, -CO · des radicaux. Au cours du processus de dégradation, du CO et du CO 2 ont également été produites.
Environmental corrosion of metals in the environment is both prevalent and costly1-3. A recent study conducted by the Australasian Corrosion Association (ACA) reported that corrosion of metals resulted in a yearly cost of $982 million, which was directly associated with the degradation of assets and infrastructure through metallic corrosion within the water industry4. From an international perspective, the World Corrosion Organization estimated that metallic corrosion was responsible for a direct cost of $3.3 trillion, over 3% of the world’s GDP5. The process of galvanizing as a corrosion preventative method has been widely used to increase the lifespan of steel material6. In humid and subtropical climates, however, water tends to condense into small pockets or grooves within the surface of the galvanized steel, leading to the acceleration of corrosion rates through pit corrosion7,8. Thermosetting polymer coatings based on polyesters have been developed to coat the galvanized steel substrata increasing their ability to withstand humid weathering conditions for items such as satellite dishes, garden furniture, air-conditioning units or agricultural construction equipment9-11. Unfortunately polymer coatings on steel surfaces have been found to be considerably adversely affected by the presence of high levels of ultraviolet (uv) radiation12-14. Coatings comprised of silica nanoparticles (SiO2) spread over a polymer layer have been widely used with a view to increasing their corrosion-, wear-, tear- and degradation-resistance15,16. The tendency of the protective polymeric coatings to form pores and cracks can be reduced by incorporating nanoparticles (NPs), which contribute to the passive obstruction of corrosion initiation17,18. Also, the mechanical stability of the protective polymeric layer can be improved by NPs inclusion. However, these coatings act as passive physical barriers and, in comparison to the galvanization approach, cannot inhibit corrosion propagation actively.
An in-depth understanding of the effect that high-levels of ultraviolet light exposure under humid conditions upon these metal coatings is yet to be obtained. In this paper, a wide range of surface analytical techniques, including X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared micro-spectroscopy (ATR IR), contact angle goniometry, optical profiling and atomic force microscopy (AFM) will be employed to examine the changes in the surface of steel coatings prepared from polyester- and silica nanoparticle-coated polyester (silica nanoparticles/polyester) after exposure to sunlight. Furthermore, the aim of this work is to give a concise, practical overview of the overall characterization techniques to examine weathered samples.
les revêtements de polyester ont été largement utilisés pour protéger des substrats en acier de la corrosion qui se produirait sur une surface non revêtue en raison de l'accumulation d'humidité et de polluants. L'application de revêtements de polyester peut protéger l'acier contre la corrosion; Cependant l'efficacité à long terme de ces revêtements est compromise si elles sont exposées à des niveaux élevés de lumière ultraviolette dans des conditions humides, comme cela se produit da…
The authors have nothing to disclose.
Funding from the Australian Research Council Industrial Transformation Research Hubs Scheme (Project Number IH130100017) is gratefully acknowledged. Authors gratefully acknowledge the RMIT Microscopy and Microanalysis Facility (RMMF) for providing access to the characterisation instruments. This research was also undertaken on the Infrared Microscopectroscopy beamline at the Australian Synchrotron, Victoria, Australia.
polyester-coated steel silica nanoparticle-polyester coated steel substrata |
BlueScope Steel | Samples provided by company | |
Millipore PetriSlideTM | Fisher Scientific | PDMA04700 | Storing samples |
Thermo ScientificTM K-alpha X-ray Photoelectron Spectrometer |
Thermo Fisher Scientific, Inc. | IQLAADGAAFFACVMAHV | Acquire XPS spectra |
Avantage Data System | Thermo Fisher Scientific, Inc. | IQLAADGACKFAKRMAVI | Analyse XPS spectra |
A Bruker Hyperion 2000 microscope | Bruker Corporation | Synchrotron integrated instrument | |
Bruker Opus v. 7.2 | Bruker Corporation | ATR-IR analysis software | |
Contact angle goniometer, FTA1000c | First Ten Ångstroms Inc., VA, USA | Measuring the wettability of surfaces | |
FTA v. 2.0 | First Ten Ångstroms Inc., VA, USA | Anaylyzing water contact angle | |
Optical profiler, Wyko NT1100 | Bruker Corporation | Measure surface topography | |
Innova atomic force microscope | Bruker Corporation | Measure surface topography | |
Phosphorus doped silicon probes, MPP-31120-10 | Bruker Corporation | AFM probes | |
Gwyddion software | http://gwyddion.net/ | Software used to measure optical profiling and AFM data |