A-תפוקה גבוהה, אוטומטית, מתודולוגיה ייצור וטרנספורמציה טבק פרוטופלאסט מתוארת. המערכת הרובוטית מאפשרת ביטוי גנים מקביל מסיבי וגילוי במודל BY-2 המערכת שאמורה להיות לתרגום לגידולים שאינם מודל.
בעשור האחרון חלה התעוררות מחודשת השימוש פרוטופלאסט צמח נעים בין מיני מודל לחתוך מינים, לניתוח של מסלולי העברת אותות, רשתות רגולטוריות תעתיק, ביטוי גנים, הגנום עריכה-להשתקת גנים. יתר על כן, התקדמות משמעותית נעשתה ההתחדשות של צמחים מפני פרוטופלאסט, אשר יצרה עניין עוד יותר את השימוש במערכות אלה עבור הגנומיקה צמח. בעבודה זו, פרוטוקול פותח לאוטומציה של בידוד פרוטופלאסט וטרנספורמציה מתרבה השעית טבק 2 'צהובה בוהק "(BY-2) באמצעות פלטפורמה רובוטית. נהלי טרנספורמציה אומתו באמצעות חלבון פלואורסצנטי כתום גן כתב (OFP) (pporRFP) תחת השליטה של אמרגן 35S וירוס פסיפס הכרובית (35S). ביטוי OFP ב פרוטופלאסט אושר על ידי מיקרוסקופ epifluorescence. ניתוח כלל גם שיטות יעילות הייצור פרוטופלאסט באמצעות propidiuיודיד מטר. לבסוף, אנזימי כיתת מזון בעלות נמוכה שמשו הליך בידוד פרוטופלאסט, עקיפת הצורך אנזימי מעבדת כיתה כי הם עלות אוסרני ב תפוקה גבוהה אוטומטי בידוד פרוטופלאסט וניתוח. בהתבסס על הפרוטוקול שפותח בעבודה זו, הנוהל במלואו מבידוד פרוטופלאסט לטרנספורמציה יכול להתנהל תחת 4 שעות, ללא כל קלט מהמפעיל. בעוד פרוטוקול שפותח בעבודה זו קיבלה תוקף עם תרבית תאים BY-2, נהלים ושיטות צריכה להיות לתרגום לכל ההשעיה צמח תרבות / מערכת פרוטופלאסט, מה שאמור לאפשר האצה של מחקר הגנום היבול.
בשנים האחרונות חלה תנופה משמעותית דגש על העיצוב של יבולים מהונדסים להתגבר מחלות שונות 1, מעניק עמידות עשבים 2, להעניק בצורת 3,4 וסובלנות מלח 5, למנוע herbivory 6, להגדיל את התשואה ביומסה 7, ולהקטין סרבנות דופן תא 8. מגמה זו כבר שנעזר בפיתוח כלים מולקולריים חדשים להפקת צמחי מהונדס, כולל הגנום עריכה באמצעות CRISPR ו TALENs 9, ואת הגן השתקה דרך dsRNA 10, מירנה 11, ו siRNA 12. בעוד הטכנולוגיות הללו יש לפשט את הדור של צמחים מהונדסים, הם גם יצרו צוואר בקבוק, שבו המספר העצום של צמחים מהונדסים שנוצר לא יכול להיות מוקרן באמצעות מערכות מסורתיות המסתמכות על התחדשות צמח. הקשורים צוואר הבקבוק הזה, תוך השתקה בונה לעריכת הגנום יכול להיות מוכנס לתוך במהירות צמחים, רבים שלתכונות ממוקדות מצליחות לייצר את האפקט הרצוי, אשר לעתים קרובות ומתגלה רק צמחים מנותחים בחממה. בעבודה זו, פיתחנו שיטה מהירה, אוטומטית, הקרנת תפוקה גבוהה של פרוטופלאסט צמח, במיוחד כדי לענות על צוואר הבקבוק הנוכחי להקרנה מוקדמת של מספר גדול של עריכת-הגנום הגן השתקה מטרות.
השימוש פרוטופלאסט, בניגוד בתאי צמח שלם, יש מספר יתרונות לפיתוח פלטפורמה אוטומטית. ראשית, פרוטופלאסט מבודד לאחר העיכול של דופן תא צמח, ועם המחסום הזה כבר לא קיים, יעילות שינוי היא גדלה 13. בתאי צמח שלמים יש רק שתי שיטות ותיקות לטרנספורמציה, biolistics 14 ו Agrobacterium בתיווך טרנספורמציה 15. אף אחת מהשיטות הללו יכולים להיות מתורגמים בקלות לפלטפורמות טיפול נוזל, כמו biolistics דורש ציוד מיוחד עבור transformation, ואילו Agrobacterium טרנספורמציה בתיווך דורשת שיתוף תרבות והסרה הבאה של החיידקים. לא ניתנים עבור שיטות תפוקה גבוהות. במקרה של פרוטופלאסט, שינוי מתבצע באמצעות פוליאתילן גליקול שיגרתי (PEG) transfection בתיווך 16, מחייב חילוף פתרון מספר בלבד, והוא אידיאלי עבור פלטפורמות טיפול נוזל. שנית, פרוטופלאסט, מעצם הגדרתו, תרבויות תא בודד, ובכך הבעיות קשורות היווצרות בצעדים כבדה שרשרת בתרביות תאי צמח, אינם שנצפה פרוטופלאסט. מבחינת לסינון מהיר באמצעות ספקטרופוטומטר מבוסס-צלחת, התקבצות של תאים, או תאים במטוסים מרובים יובילו קושי ברכישת מדידות עקביות. מאז פרוטופלאסט צפוף גם מאשר התקשורת והתרבות שלהם, הם משקעים לתחתית בארות, ויצרו בשכבה, שהיא תורמת spectrophotometry מבוסס צלחת. לבסוף, בעוד תרבויות השעית תא צמח הם primarily נגזר יבלת 17, ניתן לקצור פרוטופלאסט ממספר רקמות הצמח, מה שמוביל את היכולת לזהות ביטוי רקמות ספציפיות. לדוגמא, היכולת לנתח root- או ביטוי ספציפי עלים של גן יכול להיות חשוב מאוד לניבוי הפנוטיפ. מסיבות אלה, פרוטוקולים שפותחו בעבודה זו אומתו באמצעות פרוטופלאסט מבודד טבק-בשימוש נרחב (Nicotiana tabacum L.) 'צהוב בוהק' 2 (BY-2) תרבות ההשעיה.
תרבות ההשעיה BY-2 תוארה תא "הלה" של צמחים גבוהים יותר, בשל השימוש הנפוץ שלה באנליזה מולקולרית של בתאי צמח 18. לאחרונה, BY-2 תאים שמשו כדי לחקור את ההשפעות של צמח לחצי 19-22, לוקליזציה חלבון תאית 23,24, ביולוגיה של תא בסיסי 25-27 הוכחת השירות הרחב של תרבויות אלה בביולוגית צמח. יתרון נוסף של תרבויות BY-2 הואהיכולת לסנכרן התרבויות עם aphidicolin, מה שעלול להוביל שחזור משופר עבור ביטוי גנים שלומד 28. יתר על כן, שיטות פותחו עבור החילוץ של BY-2 פרוטופלאסט באמצעות אנזימים בעלות נמוך 29,30, כמו אנזימים מסורתיים המשמשים לייצור פרוטופלאסט הם עלות גבוהה למערכות תפוקה גבוהה. ככזה, הפרוטוקול המתואר להלן יאומת באמצעות תרבות השעית BY-2, אבל זה צריך להיות amendable לכל תרבות השעית תא צמח. הוכחה של קונספט ניסויים מבוצעים באמצעות חלבון פלואורסצנטי כתום (OFP) גן כתב (pporRFP) מן Porites האלמוגים הקשה porites 31 תחת השליטה של אמרגן 35S CAMV.
הפרוטוקול המתואר לעיל יאומת בהצלחה לבידוד פרוטופלאסט, ספירה, וטרנספורמציה באמצעות תרבית תאי השעית טבק BY-2; עם זאת, הפרוטוקול יכול בקלות להיות מורחב על כל תרבות השעית צמח. נכון לעכשיו, בידוד וטרנספורמציה פרוטופלאסט הושגה בצמחים רבים, כולל תירס (Zea Mays) 10, גזר <em…
The authors have nothing to disclose.
This research was supported by Advanced Research Projects Agency – Energy (ARPA-E) Award No. DE-AR0000313.
Orbitor RS Microplate mover | Thermo Scientific | ||
Bravo Liquid Handler | Agilent | ||
Synergy H1 Multi-mode Reader | BioTek | ||
MultiFlo FX Multi-mode Dispenser | BioTek | ||
Teleshake | Inheco | 3800048 | |
CPAC Ultraflat Heater/cooler | Inheco | 7000190 | |
Vworks Automation Software | Agilent | Software used to control and write protocols for Agilent Bravo | |
Momentum Software | Thermo Scientific | Task scheduling software for controlling Orbiter RS | |
Liquid Handling Control 2.17 Software | Biotek | Software used to control and write protocols for MultiFlo FX | |
IX81 Inverted Microscope | Olympus | ||
Zyla 3-Tap microscope camera | Andor | ||
ET-CY3/TRITC Filter Set | Chroma Technology Corp | 49004 | |
Rohament CL | AB Enzymes | sample bottle | low-cost cellulase |
Rohapect UF | AB Enzymes | sample bottle | low-cost pectinase |
Rohapect 10L | AB Enzymes | sample bottle | low-cost pectinase/arabinase |
Linsmaier & Skoog Basal Medium | Phytotechnology Laboratories | L689 | |
2,4 dichlorophenoxyacetic acid | Phytotechnology Laboratories | D295 | |
propidium iodide | Sigma Aldrich | P4170 | |
Poly (ethylene glycol) 4000 | Sigma Aldrich | 95904-250G-F | Formerly Fluka PEG |
Propidium Iodide | Fisher Scientific | 25535-16-4 | Acros Organics |
CaCl2 | Sigma Aldrich | C7902-1KG | |
Sodium Acetate | Fisher Scientific | BP333-500 | |
Mannitol | Sigma Aldrich | M1902-1KG | |
Sucrose | Fisher Scientific | S5-3 | |
KH2PO4 | Fisher Scientific | AC424205000 | |
KOH | Sigma Aldrich | P1767 | |
Gelzan CM | Sigma Aldrich | G1910-250G | |
6-well plate | Thermo Scientific | 103184 | |
96-well 1.2 ml deep well plate | Thermo Scientific | AB-0564 | |
96 well optical bottom plate | Thermo Scientific | 165305 | |
Finntip 1000 Wide bore Pipet tips | Thermo Scientific | 9405 163 | |
NaCl | Fisher Scientific | BP358-10 | |
KCl | Sigma Aldrich | P4504-1KG | |
MES | Fisher Scientific | AC17259-5000 | |
MgCl2 | Fisher Scientific | M33-500 |