Mitosis is critical to every living organism and defects often lead to cancer and developmental disorders. Using this imaging protocol and zebrafish as a model system, researchers can visualize mitosis in a live vertebrate organism and the multitude of defects that arise when mitotic processes are defective.
La mitose est critique pour la croissance de organismal et la différenciation. Le processus est très dynamique et nécessite ordonné des événements pour accomplir la condensation appropriée de la chromatine, l'attachement des microtubules-kinétochore, la ségrégation des chromosomes, et la cytokinèse dans un petit cadre de temps. Des erreurs dans le délicat processus peut entraîner des maladies humaines, y compris des malformations congénitales et le cancer. Les approches traditionnelles de l'enquête états pathologiques mitotique humains reposent souvent sur des systèmes de culture cellulaire, qui manquent de la physiologie naturelle et contexte de développement / tissu-spécifique avantageux lors de l'étude des maladies humaines. Ce protocole permet de surmonter de nombreux obstacles en fournissant un moyen de visualiser, avec une haute résolution, la dynamique des chromosomes dans un système de vertébrés, le poisson zèbre. Ce protocole détaille une approche qui peut être utilisée pour obtenir des images dynamiques de cellules en division, qui comprennent: la transcription in vitro, l' élevage du poisson zèbre / collecte, embryon plongement et imagerie time-lapse. Optimisation et modifications de ce protocole sont également explorées. Utilisation de H2A.F / Z-EGFP (étiquettes chromatine) et mCherry-CAAX (de la membrane cellulaire des étiquettes) des embryons d'ARNm-injecté, mitose dans de type sauvage AB, auroraB hi1045 et hi2865 de esco2 zebrafish mutant est visualisé. Imagerie haute résolution en direct chez le poisson zèbre permet d'observer plusieurs mitoses à quantifier statistiquement défauts mitotiques et le timing de la progression mitotique. En outre, l' observation des aspects qualitatifs qui définissent les processus inappropriés mitotiques ( par exemple, des défauts de congression, de chromosomes mauvaise ségrégation, etc.) et les résultats chromosomiques incorrecte (ie, aneuploïdie, polyploïdie, micronoyaux, etc.) sont respectées. Cet essai peut être appliqué à l'observation de la différenciation tissulaire / développement et se prête à l'utilisation du poisson zèbre mutant et agents pharmacologiques. Visualisation de la façon dont les défauts en mitose conduisent à des troubles du cancer et de développement sera grandementaméliorer la compréhension de la pathogenèse de la maladie.
La mitose est un processus essentiel du cellulaire critique pour la croissance, la différenciation et la régénération dans un organisme vivant. Lors de la préparation précise et la réplication de l'ADN en interphase, la cellule est amorcée à se diviser. La première phase de la mitose, la prophase, est initiée par l'activation de la cycline B / Cdk1. Prophase est caractérisé par la condensation de la matière de la chromatine dans les chromosomes. répartition de l'enveloppe nucléaire se produit à la transition entre prophase et prométaphase. Dans prométaphase, centrosomes, le centre de nucléation pour la formation du fuseau, commencent à migrer vers les pôles opposés tout en étendant microtubules à la recherche de l'attachement kinétochore. Lors de la fixation, les conversions pour mettre fin sur l' attachement des microtubules et des forces de tension orientent les chromosomes formant une plaque de métaphase 1. Si tous les chromosomes sont correctement fixés, le point de contrôle de l'ensemble de la broche est satisfaite, les anneaux de cohésine tenant les chromatides sœurs ensemble sont clivés et microtubules raccourcir pour tirer soeurchromatides à des pôles opposés pendant anaphase 2,3. La phase finale, télophase, implique un allongement de la cellule et de la réforme de l'enveloppe nucléaire autour des deux nouveaux noyaux. Cytokinèse achève le processus de division en séparant le cytoplasme des deux nouvelles cellules filles 4-6. Altération des principales voies mitose (c. -à- broche ensemble checkpoint, duplication centrosome, soeur chromatides cohésion, etc.) Peut entraîner la métaphase arrestation, de chromosomes mauvaise ségrégation, et de l' instabilité génomique 7-10. En fin de compte, les défauts dans les voies de la mitose contrôle peuvent provoquer des troubles du développement et cancer, nécessitant la visualisation de la mitose et ses défauts dans un vertébré, organisme multicellulaire en direct 10-16.
embryons de poisson zèbre servent comme un grand organisme modèle pour l'imagerie en direct en raison du tissu transparent, la facilité de microinjection, et le développement rapide. En utilisant zebrafish, l'objectif global de ce manuscrit est dedécrivent un procédé de 5D en temps réel (dimensions X, Y, Z, du temps et de longueur d' onde) d' imagerie de la mitose 17 (figure 1C). L'utilisation de zebrafish mutant défectueux dans différentes voies mitose démontrer la conséquence de tels défauts. Pour ce protocole, les mutants Aurora B et Esco2 ont été choisis pour illustrer ces défauts. Aurora B est une kinase qui fait partie du complexe chromosome de passagers (CPC) impliqués dans la formation du fuseau et de l'attachement des microtubules. Il est également nécessaire pour la formation de clivage de sillon dans cytokinesis 18,19. Chez le poisson zèbre, un déficit Aurora B conduit à des défauts dans l' induction sillon, cytocinèse, et la ségrégation des chromosomes 20. Esco2, d'autre part, est une acétyltransférase qui est essentiel pour la cohésion des chromatides sœurs 21,22. Il acétyle cohesin sur la partie SMC3 de l'anneau stabilisant ainsi cohesin pour assurer la séparation des chromosomes lors de la transition métaphase-anaphase 23. Perte de Esco2 chez le poisson zèbre conduit à chromosome mauvaise ségrégation, prématurée des chromatides sœurs séparation, l' instabilité génomique, et p53-dépendante et l' apoptose indépendante 24,25. En raison de la disponibilité, auroraB hi1045 et hi2865 de esco2 zebrafish mutant (ci – après dénommé aurB m / m et esco2 m / m, respectivement) sera utilisé pour illustrer cette technique 25-27.
Couplage microscopie confocale à fluorescence machinerie cellulaire étiquetée a permis aux chercheurs de visualiser la chromatine et la membrane cellulaire lors de la mitose dynamique 25,28,29. histones fluorescents marqués ont été historiquement utilisé pour visualiser la chromatine. Les histones sont des protéines nucléaires composées de quatre paires différentes (H2A, H2B, H3 et H4) qui sont responsables de la structure des nucléosomes qui compose les chromosomes 30. Alors que H2B est sans doute le histone le plus utilisé pour des protéines fluorescentes dansla souris et de la culture cellulaire, l' utilisation de Histone 2A, Z de famille (H2A.F / Z) a bien prouvé pour une utilisation dans zebrafish 31,32. Concanavaline A et la caséine kinase 1-gamma par exemple, à localiser la membrane cellulaire et ont été précédemment montré efficace pour la visualisation de la membrane cellulaire dans les oursins et 33,34 drosophile. D' autres études ont montré que la protéine fluorescente CAAX étiquetée étiquettes de la membrane cellulaire et a réussi à 31 zebrafish. CAAX est un motif qui est reconnu par les enzymes de modification post-traductionnelles telles que farnesyltransferases et geranylgeranyltransferases. Modifications par ces enzymes provoquent des protéines à devenir associées à la membrane, ainsi le marquage de la membrane cellulaire 35.
En raison de l'utilisation préalable zebrafish, ce protocole a choisi d'utiliser H2A.F / Z et CAAX pour marquer la chromatine et la membrane cellulaire. L'application de cette méthode permettra au chercheur de surveiller la mitose au niveau de la cellule individuelle pour observer le chromosome individueldynamique, comme le suivi ainsi que simultanément plusieurs divisions cellulaires qui peuvent influer sur la différenciation et le développement des tissus. Cet article se concentrera sur l'imagerie de la dynamique de la ségrégation des chromosomes lors de la mitose au niveau de la cellule individuelle. Dans ce manuscrit, la capacité d'observer plusieurs divisions mitotiques, calculer le temps de division, et de déchiffrer les phénotypes mitotiques sera illustrée et discutée. En utilisant ces paramètres, physiologiquement les données pertinentes peuvent être collectées et appliquées à plusieurs états pathologiques affectés par des défauts mitotiques.
L' utilisation de ce procédé permet de déduire une rupture de l' enveloppe nucléaire, la formation d'une plaque métaphase par des attaches microtubules kinétochore, et la ségrégation des chromatides sœurs pour former deux nouvelles cellules in vivo et d'une manière dépendante du temps. La capacité à observer mitose chez le poisson zèbre est avantageuse par rapport à des échantillons fixes et des systèmes de culture cellulaire, car les cellules sont imagées dans la physiologie n…
The authors have nothing to disclose.
We thank Kristen Kwan for the pCS2-H2A.F/Z-EGFP and pCS2-mCherry-CAAX vectors. We thank Chris Rodesch for tutoring us in live imaging in zebrafish. We thank Shawn Williams, Erik Malarkey and Brad Yoder for assistance in confocal imaging at UAB and the High Resolution Imaging Facility at UAB. The High Resolution Imaging Facility is supported by the UAB Comprehensive Cancer Center Support Grant (P30CA013148) and the Rheumatic Disease Core Center (P30 AR048311). J.M.P. is supported by the National Institute of Neurological Disease and Stroke (NIH R21 NS092105), and pilot grants from American Cancer Society (ACS IRG-60-001-53-IRG) and the UAB Comprehensive Cancer Center (P30CA013148). S.M.P. is supported by the Cell and Molecular Biology T32 Training Grant (5T32GM008111-28).
pCS2 vectors | Gift from K. Kwan | For plasmid of interest | |
NotI-HF restriction enzyme | New England BioLabs | R3189S | For restriction digest of plasmid |
mMessage SP6 kit | Life Technologies | AM1340 | For in vitro transcription |
RNeasy Mini kit | Qiagen | 74104 | For purifying mRNA |
100 x 15 mm petri dishes | Fisher Scientific | FB0875712 | For housing embryos |
microinjection mold | homemade | For holding embryos during microinjection | |
Agarose II | Amresco | 0815-25G | For embedding embryos |
Tricaine | Sigma-Aldrich | E10521-10G | For anesthetizing embryos |
Sodium Chloride | Sigma-Aldrich | S9888 | For embryo water (E3 Blue), dissolved in UltraPure H2O |
Potassium Chloride | Sigma-Aldrich | P3911 | For embryo water (E3 Blue), dissolved in UltraPure H2O |
Calcium Chloride Dihydrate | Sigma-Aldrich | C8106 | For embryo water (E3 Blue), dissolved in UltraPure H2O |
Magnesium Sulfate | Fisher Scientific | M7506 | For embryo water (E3 Blue), dissolved in UltraPure H2O |
Methylene Blue Hydrate | Sigma-Aldrich | MB1 | For embryo water (E3 Blue), dissolved in UltraPure H2O |
100 mm culture tube | Fisher Scientific | 50-819-812 | For melted agar |
35 mm glass coverslip bottom culture dish | MatTek Corp | P35G-0-20-C | No. 0, 20 mm glass, For embedding embryos |
#5 tweezers | Dumont | 72701-D | For dechorionating embryos |
21G 1 1/2 gauge needle | Becton Dickinson | 305167 | For positioning embryos in agar |
Dissecting microscope | Nikon AZ100 | For screening and embedding embryos, any dissecting scope will do | |
Confocal microscope | Nikon A1+ | For time-lapse imaging | |
Confocal software | NIS Elements AR 4.13.00 | For image acquisition and processing |