We have developed a nerve injury method to reliably examine muscle reinnervation, and thus regeneration of neuromuscular junctions in mice. This technique involves injuring the common fibular nerve via a simple and highly reproducible surgery. Muscle reinnervation in then assessed by whole-mounting the extensor digitorum longus muscle.
신경 근육 접합부 (NMJ)은 노화, 상해 및 질병으로 인한 해로운 구조적 및 기능적 변화를 겪는다. 따라서, 유지 보수 NMJs 관련된 세포 및 분자 변화를 이해하는 것이 필수적이다. 이를 위해, 우리는 신뢰성 있고 일관 생쥐 NMJs 재생 조사하는 방법을 개발 하였다. 이 무릎 근처 비복근 근육 힘줄의 측방 헤드를 통과 신경 손상이 방법은 공통 비골 신경 분쇄 포함한다. 칠십일 세 여자 마우스를 사용하여, 우리는 모터 축삭 7 일 후 호감 내에서 이전 시냅스 목표를 reinnervate하기 시작 것을 보여줍니다. 그들은 완전히 십이일에 의해 이전 시냅스 영역을 다시 선점. 이 부상 방법의 신뢰성을 확인하기 위해, 우리는 개별 칠십일 세 여성 쥐 사이 reinnervation 속도를 비교했다. 우리는 reinnervated 시냅스 사이트의 수는 7, 9에서 마우스와 유사한 것을 발견하고, 십이일 후 호감. 있는지 확인하려면이 상처 분석법 또한 근육 분자량 변화를 비교하기 위해 사용될 수 있고, 우리는 근육의 니코틴 성 수용체 (감마 ACHR) 및 근육 특정 키나아제 (MUSK)의 감마 서브 유닛의 수준을 조사 하였다. 감마 – ACHR 서브 유닛과 사향이 높은 다음 탈 신경을 상향 조절하고 NMJs의 reinnervation 다음 정상 수준으로 돌아되어 있습니다. 우리는이 유전자와 근육의 신경 분포 상태에 대한 성적 수준 사이의 밀접한 관계를 발견했다. 우리는이 방법은 NMJ 및 기타 시냅스 수리에 관련된 세포 및 분자 변화에 대한 우리의 이해를 가속화 할 것이라고 믿는다.
In young adult and healthy animals, the neuromuscular junction (NMJ) is a highly stable connection between the presynapse, the nerve ending of an α-motor axon, and the postsynapse, the specialized region of an extrafusal muscle fiber where nicotinic acetylcholine receptors (AChRs) selectively aggregate1. The nearly perfect apposition of the pre- and post-synaptic apparatuses is necessary for proper neurotransmission, survival of α-motor neurons and muscle fibers and motor function. Unfortunately, the function of the NMJ is adversely affected by aging, diseases such as amyotrophic lateral sclerosis (ALS), autoimmune diseases and injury to muscles and peripheral nerves2-5. These insults often result in degeneration of presynaptic nerve endings, leaving muscles denervated and significantly altering motor skills. For this reason, the identification of molecules that function to maintain and repair the NMJ has become a priority. Because peripheral nerves regenerate and reinnervate targets, peripheral nerve injury models have been used to identify molecular changes associated with regenerating NMJs.
Peripheral nerve injury models often involve either completely cutting or crushing specific nerve branches6. Following a cut, the endoneurial tube has to be reformed, delaying axonal regeneration and reinnervation of target cells and tissues. The severity of this type of injury also causes axons to meander away from their original path, resulting in their failure to reach original targets. This is in contrast to nerves injured via crush where the endoneurium remains contiguous, providing a path for efficient and proper regrowth of regenerating axons. It also allows axons to find and reinnervate their original muscle fiber partners. Irrespective of injury model, there are a number of cellular and molecular changes that must occur for axons to regenerate and reinnervate targets. After an injury, the nerve segment proximal to the target is broken down and removed via a process termed Wallerian Degeneration7. This process involves reprogramming and de-differentiation of Schwann cells into non-myelinating cells that secrete regenerative factors, clear myelin, and recruit macrophages to the site of injury8. Macrophages in turn complete the clearance of myelin and axonal debris, which would otherwise impede growth of the regenerating axon9. In parallel, motor and sensory neurons activate mechanisms needed to promote regeneration of their severed axons. Once the regenerating axon reaches the target, it must transform from a growth cone to a nerve ending capable of properly transmitting (for motor axons) or receiving (for sensory axons) information10. In this regard, alpha-motor axons undergo a series of well-orchestrated changes that culminate in their growth cone differentiating into a fully functional presynaptic nerve ending that nearly perfectly opposes the post-synaptic site on the target muscle fiber11.
The sciatic, tibial and accessory nerves have been the primary choices for studying axonal and NMJ regeneration12-14. However, there are a number of drawbacks when using these models to examine cellular and molecular changes associated with regenerating NMJs between animals and under different conditions. Firstly, the sciatic nerve supplies the majority of the muscles of the hind limb, with injury significantly limiting both movement and sensation. It is therefore not possible to use this method to study the impact of exercise alone or in combination with other factors. Additionally, the sciatic nerve is a rather thick structure and thus requires a large amount of compressive force to fully injure all axons. This in turn may result in complete transection of the more superficial axons while leaving the endoneurial tube of deeper lying axons intact, introducing significant variability in the rate and fidelity of regeneration among these axons. Complete transection of this nerve is even less desirable given that many axons will fail to reconnect with the same muscle fibers. Complicating matters, the sciatic nerve possesses intrinsic anatomic variability, both in the number and site of origin of its terminal nerve branches. It is therefore very difficult to lesion the same site. While the tibial nerve is smaller and more amenable to crush injuries, there is also no readily available landmark to serve as a lesion site for this nerve branch.
The accessory nerve branch (part of cranial nerve XI) that supplies the sternocleidomastoid muscle has also been used to study regeneration of NMJs15. This nerve is particularly attractive because NMJs in the sternocleidomastoid muscle can be more readily imaged in live animals compared to NMJs in other muscles. But similar to the sciatic and tibial nerves, there is no specific landmark that can be used to injure this nerve in the same location, limiting it as a model for comparing regeneration of NMJs among individual animals of an experimental cohort. An inconsistent lesion site introduces variability in the rates of NMJ reinnervation. Due to these shortcomings, the procedure presented here utilizes the injury of a different peripheral nerve branch to examine regenerating NMJs.
The common fibular nerve, also called the common peroneal nerve, contains many features that make it a reliable nerve to examine regeneration of NMJs between animals and across different treatments. The common fibular nerve has a predictable anatomic course as it runs over the tendon of the lateral head of the gastrocnemius muscle in the knee, the intersection serving as a stable landmark for lesions. The nerve is accessed through a small and minimally invasive incision near but anatomically segregated from the muscles of interest. The findings presented here demonstrate that regenerating motor axons begin to reform NMJs in the extensor digitorum longus (EDL) muscle 8 days after crushing the fibular nerve in 70 days old young adult female mice. Importantly, the pattern and rate of reinnervation is consistent among animals of the same age and sex and therefore provide a reliable injury model that will significantly hasten our understanding of the cellular and molecular changes required to maintain and repair NMJs.
이 논문에서 제시하는 방법은 신경근 접합부 (NMJ)을 수리에 관여하는 메커니즘을 식별하는 고유 한 기회를 제공합니다. 이 무릎 근처 비복근 건 통과하여이 방법은 공통 비골 신경 분쇄 포함한다. 우리는 집게와 신경 압축의 5 초 후, 완전한 변성 부상 후 사일에 의해 주목을 보여준다. 젊은 성인 쥐에서 알파 – 모터 축삭은 십이일에 의해 손상되지 않은 쥐와는 구별 시냅스 사이트의 개혁에서 남중…
The authors have nothing to disclose.
The authors thank members of the Valdez laboratory for intellectual input on experiments and comments on the manuscript.
Ketamine | VetOne | 501072 |
Xylazine | Lloyd Inc. | 003437 |
Buprenorphine | Zoopharm | 1Z-73000-150910 |
Nair | Nair | |
Kim-wipes | Kimtech | 34155 |
Electric Razor | Braintree Scientific | CLP-64800 |
80% EtOH/H20 | ||
10% Proviodine | ||
1 mL Insulin Syringe | ||
Spring Scissors | Vannas | 91500-09 |
No. 15 scalpel | Braintree Scientific | SSS 15 |
#5 Forceps | Dumont | 11252-00 |
6-0 silk suture on reverse cutting needle | Suture Express | 752B |
Rodent Heating Pad | Braintree Scientific | AP-R-18.5 |
Alexa 555 conjugated alpha-BTX | Molecular Probes | B35451 |
Vectashield | Vector Labs | H-1000 |
Olympus Stereo Zoom Microscope | Olympus | 562037192 |
Zeiss 700 Confocal Microscope | Zeiss | |
Variable-flow peristaltic perfusion pump | Fisher Scientific | 13-876-3 |
Aurum Total RNA Mini Kit | Bio-Rad | 7326820 |
Bio-Rad iScript RT Supermix | Bio-Rad | 1708840 |
SsoFast Evagreen Supermix | Bio-Rad | 1725200 |
Bio-Rad CFX96 | Bio-Rad | 1855196 |
Puralube vet ointment | Puralube | 1621 |
Synaptotagmin-2 antibody | Antibodies-Online | ABIN401605 |
Neurofilament antibody | Antibodies-Online | ABIN2475842 |