Summary

Sentezi, Karakterizasyonu ve Hibrid Au / CdS ve Au / ZnS Çekirdek / Shell Nanopartiküller işlevselleştirilmesi

Published: March 02, 2016
doi:

Summary

The synthesis of uniform gold nanoparticles coated with semiconductor shells of CdS or ZnS is performed. The semiconductor coating is conducted by first depositing a silver sulfide shell and exchanging the silver cations for zinc or cadmium cations.

Abstract

Plasmonik nanopartiküller nedeniyle görülebilir spektrumda bulunan ayarlanabilir da kolayca değiştirilebilir bir yüzeye, yüksek bir yüzey alanı ve büyük sönme katsayıları ışık hasat uygulamaları için çekici bir malzemedir. Optik geçişler plasmonik geliştirme görevlerinden dolayı Bu değiştirme olasılığı ve bu tür moleküler boyalar veya kuantum noktalar olarak yakındaki kromoforlar foto-absorpsiyon veya emisyon özelliklerini iyileştirmek bazı durumlarda, popüler hale gelmiştir. Elektronik devletleri geçiş dahil ve artan absorpsiyon ve emisyon oranlarına yol açan perturbing bir kromofor uyarım dipol ile plazmon kutu çift elektrik alanı. Bu geliştirmeler de kritik iki türün mekansal düzenlemesini yaparak, enerji transferi mekanizması tarafından yakın mesafelerde etkisiz olabilir. Sonuçta, plasmonik güneş hücreleri ışık hasat verimliliğinin artırılması, bu nedenle, düşük maliyetli cihazlar ince yol ve olabilir. kalkınmmelez çekirdek / kabuk parçacıklarının ent bu konuda bir çözüm sunabilir. altın nanopartiküller ve kromofor arasındaki dielektrik ara parçasının eklenmesi exciton plazmon birleştirme gücü kontrol etmek ve böylece plasmonik kazanımlarla kayıpları dengelemek için önerilen bir yöntemdir. altın kaplama için ayrıntılı bir prosedür sunulmuştur CdS ve ZnS yarıiletken kabukları ile nanopartiküller. nanopartiküller çekirdek altın parçacıkları ve dış kromoforlar plasmonik geliştirme içine daha doğru bir soruşturma için izin kabuk türlerinde hem de boyut kontrolü ile yüksek tekdüzelik göstermektedir.

Introduction

Altın ve gümüş nanopartiküller fotonik, 1 Fotovoltaik, 2 kataliz, 3 kimyasal / biyolojik algılama, 4 biyolojik görüntüleme, 5 ve fotodinamik tedavi de dahil olmak üzere çeşitli uygulamalar gelecek teknolojik gelişmeler için potansiyel. 6 görünür uyarma altında olması, yüzey elektronlar için salınım olabilir görülebilir spektrumda gelen ışımayı konsantre kullanılabilecek bir kısmi yüzey plazmon rezonansı (SPR) olarak bilinen bir rezonans oluşturur. Son zamanlarda, değerli metal nanopartiküller gelişmiş ve ayarlanabilir işlevselliği ile melez nanopartiküller üretmek için yarı iletken ya da manyetik nanopartiküller ile kombine edilmiştir. Böyle Ouyang ve ark., 9 veya Chen ve ark., 10 çalışmasında olarak 7,8 Yeni edebiyat, göstermiştir hibrid türlerin homojenliği bu parçacıklar sentezi, ancak sınırlı bir kontrol olasılığı nedeniyle mümkündürBir altın nanoparçacık boyutları dağılımı ve büyüme her aşamasında fiziksel karakterizasyonu ile birleştiğinde optik karakterizasyonu eksikliği bileşik. Zamkov ve ark. Kabuk oluşumunda benzer tekdüzelik gösterdi ama sadece bir kabuk kalınlığı tam olarak nanopartiküller etrafında oluşan bazı kabukları ile farklı çekirdek boyutları ile kullanılmıştır. etkin bir şekilde bu nano-tanecikleri yararlanmak için, hassas optik cevap bilinmelidir ve kabuk kalınlıkları çeşitli karakterize edilir. Kabuk kalınlığı yüksek hassasiyet son hibrid türleri üzerinde daha yüksek kontrol sonuçlanan şablon olarak tek dağılımlı sulu altın parçacıkları kullanılarak gerçekleştirilebilir. Çekirdek ve kabuk arasındaki etkileşim nedeniyle yarı iletken malzemenin az miktarda ve altın çekirdek yakınlığı emilim veya emisyon oranlarında sınırlı kontrastlanma gösterebilir. Bunun yerine kabuk ve altın parçacık bulunan yarıiletken arasındaki etkileşimin, kabuk kullanımı olabilirbir ara parçası olarak d harici kromofor arasındaki mesafeyi sınırlamak için. Bu 11 plazmon süre arasındaki mekansal ayrılık üzerinde yüksek kontrol için izin verecek, metal yüzey ile doğrudan temas sonuçlarını inkâr.

Yüzey plazmon rezonansı ve kromofor üretilen eksiton arasındaki elektronik etkileşimin derecesi, doğrudan etkileşim metal ve yarı iletken türleri arasındaki mesafe, yüzey çevre ve gücüne orantılıdır. 12 tür daha büyük mesafeler ile ayrılmış olduğunda 25 nm, iki elektronik durumlar soğukkanlı kalır ve optik cevap değişmeden kalır. parçacıklar daha yakın temas ve (ışınımsız oran geliştirme veya Forester Rezonans Enerji Transferi üzerinden herhangi bir uyarım enerjisi söndürme neden olabilir zaman 13 güçlü kavrama rejimi hakim olduğu FRET). kavrama gücü 14,15 Manipülasyon, tuning th tarafındankromofor ve metal nanoparçacık arasında e aralık, hem de olumlu etkilere neden olabilir. nanoparçacık söndürme katsayısı nanopartiküller çok daha etkili bir olay ışık konsantre sağlayan, çoğu kromoforlar daha büyük büyüklük emir olabilir. Nanopartikülün artan uyarma etkinliğini kullanarak kromofor yüksek uyarma oranlarının neden olabilir. Uyarma dipol 12 Kuplajını da ışınımsız oranları etkilenmez ise, kuantum verimi artışa yol açabilir kromofor emisyon oranını artırabilir. 12 Bunlar etkileri nedeniyle lokalize yüzey durumlarının mevcudiyetine altın ve yarı iletken tabakadan yük ekstre kolaylığı emilmesi kesiti ile kolaylaştırılmış güneş hücreleri veya artan absorbans filmler ve fotovoltaik verimliliği, neden olabilir. 12,16 Bu çalışmada ayrıca af olarak plazmon birleştirme gücü hakkında yararlı bilgiler verecektirmesafe unction.

Lokalize yüzey plazmon yaygın nedeni yerel ortama plazmon rezonansı hassasiyetine 17 ve algılama 18 uygulamaları algılama kullanılmıştır. Cronin ve arkadaşları., Altın nano partiküller eklenerek geliştirilebilir TiO2 filmler katalitik etkinliği göstermiştir. Simülasyon aktivitesi bu artış daha sonra exciton üretim fiyatlarını arttırır TiO2, oluşturulan eksitonlar ile plazmon elektrik alanının bağlanması bağlı olduğunu göstermiştir. Schmuttenmaer ve diğ., Gösterdi 19 boya hassas (DSSC) etkinliği güneş pilleri Au / SiO2 / TiO2 agrega eklenmesi ile geliştirilebilir. Agrega frekansların daha geniş bir aralığı üzerinde optik emilimini artırmak geniş lokalize yüzey plazmon modları oluşturulması yoluyla emilimini artırır. 20, Li ve arkadaşları başka Literatürde. Gözlemlemekkararlı durum floresan floresan ömür boyu d anlamlı bir azalma yanı sıra mesafe bağımlı geliştirme, tek bir CdSe / ZnS kuantum nokta doğrudan bağlanması ve tek altın nano ile gözlenmiştir. 21, bu plasmonik donanımın tam olarak yararlanmak için, bir var iki tür arasındaki bir dizi mesafelerde fiziksel bağlantı için gereklidir.

Hibrid Nanopartiküller Sentezi

Jiatiao ve ark., Düzgün ve ayarlanabilir kabuk kalınlıkları elde etmek için, bir katyonik değişim ile altın nano partiküller üzerine kaplama yarı iletken malzemeye bir yöntem açıklamıştır. kabukları eşit kalınlıkta, ama altın şablonları çok dağılımlı değildi. Bu parçacığa parçacık ve bu nedenle kavrama gücü altın oranı yarıiletken değiştirecektir. Bu çekirdek kabuğu nanopartiküller optik özellikleri hakkında 9 derinlemesine bir çalışma Reprod geliştirmek amacıyla, yapılmıştırucible sentetik metot. Önceki yöntemler nedeniyle altın nanoparçacık boyutunda homojen geniş plazmon tınısına örnekleri üretebilir organik bazlı nanoparçacık sentezi, güveniyor. Altın nano partiküller bir tadil edilmiş sulu sentez zaman uzun süreler için stabilitesi olan bir tekrar üretilebilir ve tek dağılımlı altın nano partıkuler şablonu sağlar. Sulu yüzey aktif madde, setil trimetil amonyum klorür nedeniyle yakın setil trimetil amonyum klorür moleküllerinin uzun karbon zincirleri arasındaki etkileşime nanopartikül yüzey üzerinde bir çift tabaka meydana getirir. 22 Bu kalın yüzey tabakası nanopartikül yüzeyine erişim fazla yüzey kaldırıp izin vermek için dikkatli bir yıkama gerektirir ama nanoparçacık boyutu ve şekli üzerinde daha yüksek kontrol sağlayabilir. 23 gümüş kabuk sulu eklenmesi kabuk kalınlığı ve optik özellikleri arasında daha samimi bir korelasyon giden yüksek hassasiyet ile kontrol edilebilir. 23 askorbik ac yoluyla daha yavaş bir azalmaID çözelti içinde gümüş nanopartikülleri oluşumunu önlemek için, çok hassas olması gümüş tuzu ilave edilmesini gerektiren, altın yüzey, gümüş biriktirilmesi için kullanılır. Üçüncü adım, sülfür, büyük miktarda bir organik faza ilave edilecek ve sulu nanopartiküllerin bir faz transfer gerçekleşmelidir gerektirir. Bir kapatma maddesi ve nanopartiküller, muntazam bir faz transfer maksadı hem de hareket edebilir bir organik sınırı madde ve oleik asit gibi oleilamin eklenmesiyle, şekilsiz bir gümüş sülfür kabuğu nanopartiküller yaklaşık oluşturulabilmektedir. 9,24 konsantrasyonu bu moleküller, bu adımda nanopartiküllerin toplanmasını önlemek için yeterince yüksek olmalıdır, fakat çok fazla aşırı saflaştırma zorlaştırabilir. tri bütil fosfin ve bir metal nitrat (CD, Zn veya Pb) varlığında, şekilsiz bir sülfid kabuk içinde bir katyonik değişim yapılabilir. Reaksiyon sıcaklıkları metal 9 farklı reaksiyona modifiye edilmelidirve herhangi bir aşırı kükürt bireysel kuantum noktaların oluşumunu azaltmak için ortadan kaldırılmalıdır. her bir sentez aşamasındaki nanopartikül yüzey ortamında bir değişiklik, bu yüzden, plazmon bir değişiklik, bir dielektrik alanı çevreleyen plazmon frekansı bağımlılığı dikkate alınmalıdır karşılık gelir. Transmisyon Elektron Mikroskobu (TEM) karakterizasyonu bir fonksiyonu olarak optik emme benzer bir çalışmanın nano-tanecikleri karakterize etmek için kullanıldı. Bu sentetik prosedür mikroskopi ve spektroskopi verilerinden daha iyi bir korelasyon sağlayan iyi kontrollü ve düzgün örnekleri ile bize sağlayacaktır.

Fluorophores Kavrama

Bir plasmonik metal yüzey ve bir floroforla arasındaki dielektrik mesafe tabakasının uygulanması metal içine oluşturulmuş eksitonlar arasında radyatif olmayan enerji transferi bağlı kayıpları azaltmak için yardımcı olabilir. Bu boşluk tabaka ayrıca florofor arasındaki mesafe bağımlılığı çalışma yardımcı olabilirmetal bir yüzeyin üzerine plazmon rezonans. Bizim dielektrik aralık katmanı olarak hibrid nanopartiküllerin yarı iletken kabuk kullanıyorsanız öneriyoruz. Kabuk kalınlığı 2 nm kesin mesafe korelasyon deneyleri yapılacak sağlayan 20 nm arasında değişen kalınlıklarda nanometre hassasiyetle ayarlanabilir. Kabuk ayrıca mesafe değil, aynı zamanda dielektrik sabiti, elektronik bant düzenlemesi ve hatta kristal kafes parametreleri sadece üzerinde kontrol sağlayan, Cd, Pb veya Zn katyon ve S, Se ve Te anyonlar ile ayarlanabilir.

Protocol

Altın Nanopartiküller 1. Sentezi eldiven kutusu altın tuzunu tartın ve volümetrik bir şişede, su ile sulandırıldı, daha önce su regia ile temizlenmiş bir şişeye ekleyin. Altın stok çözeltisi için 100 ml su içinde 1 mM altın (III) klorid trihidrat (393,83 g / Mol) hazırlayın. çözünme için yaklaşık 60 ° C arasında, 25 ml su içinde, 3.2 g katı madde CTAC (320 g / mol) ve ısı tartılır. Oda sıcaklığına soğutulur ve 0.2 M setil trimetil amonyum klorür (CTAC) madde…

Representative Results

Üç farklı yüzey aktif altın nanopartiküllerinin Normalleştirilmiş emme spektrumu Şekil 1 'de gösterilmiştir. Kullanılan yüzey aktif maddeler oleilamin, tetradesil trimetil amonyum klorür (TTAC) ve setil trimetil amonyum klorürdür. CTAC ve TTAC yüzey aktif dar plazmon rezonans soğurma bandı göstermektedir. indirgeyici ajan miktarı, sadece FWHM, ancak elde edilen nano partiküler solüsy…

Discussion

Altın nanopartiküller

Yüksek kaliteli çekirdek-kabuk nano-tanecikleri temin etmek için, altın nanopartiküllerinin tek dağılımlı bir örneği şablon olarak ilk sentez edilmelidir. 28,29,30 Bunun yerine oleilamin başlıklı uzun zincirli tertier aminler kapaklı nanopartiküller üretmek için, altın nano partıkuler sentez modifiye nanopartiküller. Oleilamin başlıklı nanopartiküllerinin tek dağılımlı boyut aralığının gösterge oldukça dar plazmon rezonan…

Disclosures

The authors have nothing to disclose.

Acknowledgements

1352507 – Bu madde CHE altında Ulusal Bilim Vakfı tarafından desteklenen çalışma dayanmaktadır.

Materials

MilliQ Water Millipore Millipore water purification system water with 18 mega ohm resistivity was utilized in all experiments
Gold (II) chloride trihydrate Sigma Aldrich 520918 used as gold precursor for nanoparticle synthesis
Cetyl trimethyl ammonium chloride(CTAC) TCI America H0082 used as surfactant for gold nanoparticles
Borane tert butyl amine Sigma Aldrich 180211 used as reducing agent for gold nanoparticles
Silver nitrate Sigma Aldrich 204390 used as silver source for shell application
Ascorbic acid Sigma Aldrich A0278 used as reducing agent for silver shell application
Sulfur powder Acros 199930500 used as sulfur source for silver sulfide shell conversion
Oleylamine Sigma Aldrich O7805 used as surfactant for silver sulfide shell conversion
Oleylamine Sigma Aldrich 364525 used as surfactant for silver sulfide shell conversion
cadmium nitrate tetrahydrate Sigma Aldrich 642405 used as cadmium source for cation exchange
zinc nitrate hexahydrate Fisher Scientific Z45 used as zinc source for cation exchange
11-Mercaptoundecanoic acid Sigma Aldrich 450561 used as water soluable ligand during ligand exchange
3,4 diaminobenzoic acid Sigma Aldrich D12600 used as water soluable ligand during ligand exchange
UV-Vis absorption spectrophotometer Cary 50 Bio used to monitor absorption spectrum of colloidal solutions
JEOL TEM 2100 JEOL 2100 used to analyze size of synthesized nanoparticles. TEM grids were purchased from tedpella
FTIR spectrophotometer Perkin Elmer Spec 100 used to monitor chemical compostion of nanoparticle surface after ligand exchange. 

References

  1. Pyayt, A. L., Wiley, B., Xia, Y., Chen, A., Dalton, L. Integration of photonic and silver nanowire plasmonic waveguides. Nature nanotechology. 3, 660-665 (2008).
  2. Chuang, M. -. K., Lin, S. -. W., Chen, F. -. C., Chu, C. -. W., Hsu, C. -. S. Gold nanoparticle-decorated graphene oxides for plasmonic-enhanced polymer photovoltaic devices. Nanoscale. 6, 1573-1579 (2014).
  3. Ide, M. S., Davis, R. J. The Important Role of Hydroxyl on Oxidation Catalysis by Gold Nanoparticles. Accounts of chemical research. , (2013).
  4. Saha, K., Agasti, S. S., Kim, C., Li, X., Rotello, V. M. Gold Nanoparticles in Chemical and Biological Sensing. Chemical Reviews. 112, 2739-2779 (2012).
  5. Wang, H., et al. Computed tomography imaging of cancer cells using acetylated dendrimer-entrapped gold nanoparticles. Biomaterials. 32, 2979-2988 (2011).
  6. Huang, X., Jain, P. K., El-Sayed, I. H., El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in medical science. 23, 217-228 (2008).
  7. Costi, R., Saunders, A. E., Banin, U. Colloidal hybrid nanostructures: a new type of functional materials. Angewandte Chemie International Edition. 49, 4878-4897 (2010).
  8. Xu, X., et al. Near-Field Enhanced Plasmonic-Magnetic Bifunctional Nanotubes for Single Cell Bioanalysis. Advanced Functional Materials. 23, 4332-4338 (2013).
  9. Zhang, J., Tang, Y., Lee, K., Ouyang, M. Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science. 327, 1634-1638 (2010).
  10. Sun, H., et al. Investigating the Multiple Roles of Polyvinylpyrrolidone for a General Methodology of Oxide Encapsulation. Journal of the American Chemical Society. 135, 9099-9110 (2013).
  11. Khatua, S., et al. Resonant Plasmonic Enhancement of Single-Molecule Fluorescence by Individual Gold Nanorods. ACS Nano. 8, 4440-4449 (2014).
  12. Lakowicz, J. R., et al. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst. 133, 1308-1346 (2008).
  13. Tam, F., Goodrich, G. P., Johnson, B. R., Halas, N. J. Plasmonic enhancement of molecular fluorescence. Nano Letters. 7, 496-501 (2007).
  14. Achermann, M. Exciton-Plasmon Interactions in Metal-Semiconductor Nanostructures. The Journal of Physical Chemistry Letters. 1, 2837-2843 (2010).
  15. Zhang, X., et al. Experimental and Theoretical Investigation of the Distance Dependence of Localized Surface Plasmon Coupled Förster Resonance Energy Transfer. ACS Nano. 8, 1273-1283 (2014).
  16. Kamat, P. V. Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters. The Journal of Physical Chemistry C. 112, 18737-18753 (2008).
  17. Nagraj, N., et al. Selective sensing of vapors of similar dielectric constants using peptide-capped gold nanoparticles on individual multivariable transducers. Analyst. 138, 4334-4339 (2013).
  18. Nossier, A. I., Eissa, S., Ismail, M. F., Hamdy, M. A., Azzazy, H. M. E. -. S. Direct detection of hyaluronidase in urine using cationic gold nanoparticles: A potential diagnostic test for bladder cancer. Biosensors and Bioelectronics. 54, 7-14 (2014).
  19. Hou, W., Liu, Z., Pavaskar, P., Hung, W. H., Cronin, S. B. Plasmonic enhancement of photocatalytic decomposition of methyl orange under visible light. Journal of Catalysis. 277, 149-153 (2011).
  20. Sheehan, S. W., Noh, H., Brudvig, G. W., Cao, H., Schmuttenmaer, C. A. Plasmonic enhancement of dye-sensitized solar cells using core-shell-shell nanostructures. The Journal of Physical Chemistry C. 117, 927-934 (2013).
  21. Ratchford, D., Shafiei, F., Kim, S., Gray, S. K., Li, X. Manipulating Coupling between a Single Semiconductor Quantum Dot and Single Gold Nanoparticle. Nano Letters. 11, 1049-1054 (2011).
  22. Sau, T. K., Murphy, C. J. Self-Assembly Patterns Formed upon Solvent Evaporation of Aqueous Cetyltrimethylammonium Bromide-Coated Gold Nanoparticles of Various Shapes. Langmuir. 21, 2923-2929 (2005).
  23. Ma, Y., et al. Au@Ag Core-Shell Nanocubes with Finely Tuned and Well-Controlled Sizes, Shell Thicknesses, and Optical Properties. ACS Nano. 4, 6725-6734 (2010).
  24. Park, G., Lee, C., Seo, D., Song, H. Full-Color Tuning of Surface Plasmon Resonance by Compositional Variation of Au@Ag Core-Shell Nanocubes with Sulfides. Langmuir. 28, 9003-9009 (2012).
  25. Germain, V., Li, J., Ingert, D., Wang, Z. L., Pileni, M. P. Stacking Faults in Formation of Silver Nanodisks. The Journal of Physical Chemistry B. 107, 8717-8720 (2003).
  26. Reiss, P., Protière, M., Li, L. Core/Shell Semiconductor Nanocrystals. Small. 5, 154-168 (2009).
  27. Vossmeyer, T., et al. CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. The Journal of Physical Chemistry. 98, 7665-7673 (1994).
  28. Shore, M. S., Wang, J., Johnston-Peck, A. C., Oldenburg, A. L., Tracy, J. B. Synthesis of Au (Core)/Ag (Shell) nanoparticles and their conversion to AuAg alloy nanoparticles. Small. 7, 230-234 (2011).
  29. Liu, X., Atwater, M., Wang, J., Huo, Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids and Surfaces B: Biointerfaces. 58, 3-7 (2007).
  30. Lambright, S., et al. Enhanced Lifetime of Excitons in Nonepitaxial Au/CdS Core/Shell Nanocrystals. ACS Nano. 8, 352-361 (2014).
  31. Srnová-Šloufová, I., Lednický, F., Gemperle, A., Gemperlová, J. Core-shell (Ag) Au bimetallic nanoparticles: analysis of transmission electron microscopy images. Langmuir. 16, 9928-9935 (2000).

Play Video

Cite This Article
Tobias, A., Qing, S., Jones, M. Synthesis, Characterization, and Functionalization of Hybrid Au/CdS and Au/ZnS Core/Shell Nanoparticles. J. Vis. Exp. (109), e53383, doi:10.3791/53383 (2016).

View Video