Here, we present a protocol to investigate multi-component phase diagrams using externally controlled magnetic beads as liquid carriers in a lab-in-tube approach. This approach can aid in applications that seek to gather further information on phase change in complex liquid systems.
使用实验室中管的方法用于输送液体微升容积量与磁珠一起MATLAB进行数值分析,平均液体结转卷,磁珠质量的函数,被发现(图2)。更高质量的磁珠提供在2-3微升/毫克的速率更高的结转量。实验设置(图1)被用来观察的 H 2 O / C12E5二元体系内的相变。由于H 2 O / C12E5系统是公知的,有许多不同的阶段,它可以在图3B中可以看出,它作为参考的?…
The authors acknowledge many useful discussions with M. Caggioni and support from Proctor and Gamble in the form of an internship for NAB.
Materials
AccuBead
Bioneer Inc.
TS-1010-1
Magnetic beads
C12E5 Surfactant
Sigma-Aldrich
76437
Thermo Scientific Nalgene 890
Fisher Scientific
14176178
Cube Magnet
Apex Magnets
M1CU
Polarizer Film
Edmund Optics
38-493
Teflon AF
Dupont
400s1-100-1
Fluoropolymer solution
Keyacid Red Dye
Keystone
601-001-49
Fluorescent dye
Luer-Lock
Cole-Parmer
T-45502-12
Female
Luer-Lock
Cole-Parmer
T-45502-56
Male
Syringe
Fisher Scientific
14-823-435
3 mL
Syringe Pump
Stoelting
53130
Stereo Microscope
Nikon
SMZ-2T
Inverted Microscope
Nikon
Eclipse Ti-U
The filter cube used had an excitation wavelength range from 540-580 nm and a dichroic mirror at 585 nm, allowing for photoemission ranging from 593-668 nm.
Blumenschein, N., Han, D., Steckl, A. J. Phase Diagram Characterization Using Magnetic Beads as Liquid Carriers. J. Vis. Exp. (103), e52957, doi:10.3791/52957 (2015).