Production bleed water (PBW) was treated with cupric oxide nanoparticles (CuO-NPs) and cellular toxicity was assessed in cultured human cells. The goal of this protocol was to integrate the native environmental sample into a cell culture format assessing the changes in toxicity due to CuO-NP treatment.
In situ-Gewinnung (ISR) ist die vorherrschende Methode der Urangewinnung in den Vereinigten Staaten. Während der ISR wird Uran aus einem Erz Körper ausgelaugt und durch Ionenaustausch extrahiert. Die sich ergebende Produktionsblutwasser (PBW) enthält Schadstoffe wie Arsen und andere Schwermetalle. Proben von PBW von einem aktiven ISR-Urananlage wurden mit Kupfer-II-Nanopartikel (CuO-NPs) behandelt. CuO-NP Behandlung PBW reduziert vorrangiger Schadstoffe einschließlich Arsen, Selen, Uran und Vanadium. Unbehandelt und CuO-NP behandelt PBW wurde als die flüssige Komponente der Zellwachstumsmedien und Änderungen der Lebensfähigkeit verwendet wurden mit dem MTT (3- (4,5-Dimethylthiazol-2-yl) -2,5-diphenyltetrazoliumbromid) bestimmt Assay in humanen embryonalen Nieren (HEK 293) und die menschliche Leberzellkarzinom (Hep G2-Zellen). CuO-NP-Behandlung wurde mit verbesserten HEK und HEP Lebensfähigkeit der Zellen verbunden. Beschränkungen dieses Verfahrens umfassen die Verdünnung des PBW durch Wachstumsmedienkomponenten und während osmolnalität Verstellung sowie notwendige pH-Einstellung. Dieses Verfahren wird im weiteren Kontext durch Verdünnungseffekte und Veränderungen im pH-Wert der PBW die jedoch üblicherweise leicht sauer ist begrenzt; Diese Methode könnte einen breiteren Einsatz der Beurteilung CuO-NP Behandlung in neutraler Gewässer.
Etwa 20% des US-Stromversorgung durch Kernenergie und zum Teil auf der Grundlage nationaler Anreize zur Energieunabhängigkeit zu erhöhen, US nukleare Kapazität wird voraussichtlich weiter steigen 1. Weltweites Wachstum der Kernenergie auch wird sich voraussichtlich fortsetzen, wobei ein Großteil des Wachstums außerhalb der USA 2 auftritt. Ab 2013 wurde 83% der US Uran importiert, aber 952.544 Tonnen Reserven in den USA 3,4 vorhanden sind. Im Jahr 2013 gab es 7 neue Anlage-Anwendungen und 14 Neustart / Erweiterung von Anwendungen zwischen Wyoming, New Mexico, und Nebraska 5. In den USA Uran vorwiegend durch in situ-Gewinnung (ISR) verarbeitet 6 extrahiert. ISR bewirkt, dass weniger Land Unterbrechung und verhindert die Schaffung Halden, die Umweltschadstoffe 7 freigeben können. ISR verwendet wasserbasierte Oxidations Lösungen für Uran von der U-Erzkörper, wonach das Uran aus dem Sickerwasser durch extrahiert auslaugenein Ionenaustauschverfahren 8. Um eine negative Wasserbilanz in der Erzkörper zu halten, wird ein Teil des Sickerwassers, bluten genannt Produktionswasser (PBW) ist abfallend. Ein Teil der PBW wird mit Umkehrosmose (RO) und dekontaminiert in den Abbauprozess wieder eingeführt, aber PBW könnte auch von Vorteil industriellen oder landwirtschaftlichen Nutzen haben, wenn toxische Schadstoffe auf ein annehmbares Niveau von staatlichen Aufsichtsbehörden für die Oberflächen ermittelt und reduziert werden Grundwasser 9. Gegenwärtig sind die meisten ISR-Uran Einrichtungen nutzen RO, um Verunreinigungen aus PBW entfernen. Allerdings ist RO Bearbeitungsenergieintensiv und erzeugt giftige Abfälle Sole, die geregelte Entsorgung erfordert.
Viele Wasserdekontaminationsverfahren existieren, einschließlich Adsorbentien, Membranen und Ionenaustausch. Von diesen ist die Adsorption der am häufigsten verwendet wird, und die jüngsten Entwicklungen in der Synthese von Nanopartikeln ist die Leistungsfähigkeit des Adsorptionsmittels basierten Wasser Dekontaminierungsverfahren 10 verbessert. Cupric oxide-Nanopartikel (CuO-NPs) hatte zuvor nicht umfassend auf Uran ISR PBW studiert, aber in den letzten Studien der Entfernung von Verunreinigungen aus dem Grundwasser, CuO-Nanopartikel wurden gefunden, um einzigartige Eigenschaften, einschließlich nicht vor oder nach der Wasserbehandlungsschritte erfordern (haben B. Einstellen des pH oder Redox-Potential) und eine gute Leistung in unterschiedlichen Wasserzusammensetzungen (beispielsweise in verschiedenen pH-Werten, Salzkonzentrationen oder konkurrierende Ionen) 11. Zusätzlich sind CuO-NPs leicht durch Auslaugen mit Natriumhydroxid (NaOH), wonach der regenerierte CuO-NPs können wiederverwendet werden regeneriert. Details der CuO-NP Spurenmetallfilterfunktionen von natürlichen Gewässern haben bisher veröffentlichten 11-14 worden.
Obwohl nützlich für die Wasserbehandlung können Metalloxidnanopartikel toxisch für lebende Organismen, aber das Ausmaß der Toxizität hängt teilweise von Nanopartikel Merkmale und Bestandteile 10,15,16. Daher ist es wichtig zu untersuchen simultaneous Entfernung von Verunreinigungen und Nanopartikel-Toxizitäten vor Feldeinsatz. Die aktuelle Studie ermittelt die Fähigkeit des CuO-Nanopartikel zu Prioritäts PBW Verunreinigungen (einschließlich Arsen, Selen, Vanadium und Uran) zu entfernen, und bewertet die Wirkung von CuO-NP-Behandlung auf PBW Zytotoxizität.
PBW wurde aus einer aktiven ISR Urananlage gesammelt und verwendet, um die Wirksamkeit von CuO-NP Behandlung Priorität Verunreinigungsentfernung zu bestimmen. PBW Zytotoxizität vor und nach der CuO-NP Behandlung auch beurteilt. PBW ist eine komplexe geologische (Industrie / Umwelt) des Gemischs und sowohl das National Institute of Environmental Health and Science (NIEHS) und der Agentur für Toxic Substances & Disease Registry (ASTDR) werden den Schwerpunkt auf die Untersuchung der Toxizität von umweltrelevanten Gemischen, einschließlich Mischungen wie sie in der Natur oder industriellen Umgebungen, sowie die Förderung in vitro-Tests bestehen, um Chemikalien für weitere in-vivo-Tests zu priorisieren17-19. Studien zur chronischen, niedrig dosierte Mischung Engagements sind eine Herausforderung, weil chronische Exposition gegenüber einer niedrigen Dosis Mischung nicht produzieren offensichtlichen Auswirkungen, zumindest nicht in der kurzen Zeit der meisten Laborstudien. Ähnlich den meisten in-vitro-Untersuchungen von chemischen Mischungen aussetzen Zellen einer definierten Labor hergestellten Mischung aus 2 oder mehreren Metallen 20,21. Diese Studien liefern Basisinformationen, aber vereinfachte Mischung nicht den komplexen antagonistischen und synergistischen Interaktionen, die in einer nativen, Umweltprobe, in der das gesamte Spektrum der Mischungskomponenten vorliegen, die auftreten können zu replizieren.
Die Ziele dieser Studie waren alternative Schmutzentfernungsverfahren für PBW zu untersuchen und die Wirkung (CuO-NP) Behandlung auf PBW Cytotoxizität an kultivierten menschlichen Zellen zu bewerten. Die Ergebnisse könnten die Uranindustrie durch die Entwicklung effizienter und umweltfreundliche Methoden zur Entfernung von Verunreinigungen zu profitieren. Diese Studie liefertder erste Beweis, dass die Reduktion der vorrangigen Schadstoffe in PBW von CuO-Nanopartikel reduziert Zytotoxizität in Säugetierzellen 22.
Frühere Studien berichteten, dass CuO-Nanopartikel entfernt Arsen aus Grundwasser 11,13,30,31. Diese Studie unterstützt diese früheren Ergebnisse und berichtet, dass CuO-Nanopartikel zu entfernen zusätzliche Verunreinigungen von PBW auch. Diese Studie bestätigt auch früheren Berichten, dass CuO-NPs sind wirksam bei der Entfernung von Arsen, trotz der Anwesenheit von anderen Verunreinigungen und mögliche Konkurrenzionen 11. Speziation Modellierung vorhergesagt, dass 97% der Vanadiumspezies in…
The authors have nothing to disclose.
We thank Dr. Roger Hopper and the Wyoming Department of Agriculture, Analytical Services Lab for the mass spectroscopy analysis of our samples. We would like to express our gratitude to the University of Wyoming, School of Pharmacy for allowing us to video this protocol in their laboratories. We would also like to thank the Theodore O. and Dorothy S. King Endowed Professorship Agreement for their graduate assistantship (SC), the University of Wyoming for the Graduate Assistantship support (JRS), and the Science Posse (NSF GK-12 Project # 084129) for the teaching fellowship (JRS). We would also like to thank Uranium One for allowing us to obtain samples and assisting us with questions. This work was supported by the School of Energy Resources, University of Wyoming.
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
CuCl2 | Sigma | 203149 | |
Borosilicate glass balls | VWR | 26396-639 | 6 mm |
Nitric Acid | Fisher | A509-P500 | Trace metal grade |
0.45 mm syringe filter | Fisher | SLHA 033S S | |
10X EMEM | Fisher | BW12-684F | |
Fetal Bovine Serum | ATCC | 30-2020 | |
L-glutamine | Fisher | BP379-100 | |
NaHCO3 | Sigma | S5761 | |
Penicillin/Streptomycin | ATCC | 30-2300 | |
0.22 mm vacuum filter unit | Fisher | 09-740-28C | |
HEK293 | ATCC | CRL-1573 | |
HEPG2 | ATCC | HB-8065 | |
Trypsin | Sigma | SV3003101 | |
MTT | Sigma | M2128 | |
D-penicillamine | Fisher | ICN15180680 | |
96-well plates | Fisher | 07-200-92 | |
DMSO | Fisher | D12814 | |
Spectra Max 190 | Molecular Devices | ||
Visual MINTEQ version 3.0 | KTH Royal Institute of Technology | ||
ICP-MS | Agilent | Details of instruments, models and detection limits were published in Reddy et al., 2013. | |
IC DIONEX DX 500 | Dionex | Details of instruments, models and detection limits were published in Reddy et al., 2013. | |
VWR Incubator | VWR |