Summary

浮袋注入による幼虫ゼブラフィッシュにおける粘膜カンジダ症のモデル化

Published: November 27, 2014
doi:

Summary

In vivo spatio-temporal interactions of pathogen and immune defenses at the mucosal level are not easily imaged in existing vertebrate hosts. The method presented here describes a versatile platform to study mucosal candidiasis in live vertebrates using the swimbladder of the juvenile zebrafish as an infection site.

Abstract

粘膜病原体に対する初期の防衛は上皮バリアと自然免疫細胞の両方で構成されています。両方の免疫適格、と彼らの相互通信は、感染症に対する保護のための最も重要である。病原体上皮および自然免疫細胞の相互作用は最高の複雑な挙動は、時間と空間に繰り広げられる、生体内調査されている。しかし、既存のモデルは、粘膜レベルでの病原体との戦いの容易な時空間的イメージングを可能にしない。

ここで開発されたモデルは、少年ゼブラフィッシュの浮袋に、真菌病原体、 カンジダ·アルビカンスの直接注射により粘膜感染が作成されます。得られた感染は、上皮および粘膜疾患の発生を通じて自然免疫細胞の挙動の高分解能イメージングを可能にする。この方法の汎用性は、pHをもたらす免疫イベントの詳細なシーケンスをプローブするホストの尋問が可能にagocyte動員および保護において、特定の細胞タイプおよび分子経路の役割を検討する。また、免疫攻撃の関数としての病原体の挙動は、蛍光タンパク質を発現するC.で同時に撮像することができるアルビカンス 。宿主 – 病原体相互作用の増大した空間分解能について迅速浮袋切開技術を用いても可能である。

ここで説明粘膜感染モデルは、粘膜カンジダ症の研究のための貴重なツール作り、簡単な再現性の高いです。このシステムはまた、マイコバクテリア、正常上皮表面を介して感染する細菌またはウイルス、微生物などの他の粘膜病原体に広く翻訳可能であってもよい。

Introduction

Mucosal infections can lead to life threatening bloodstream infections due to the damage of the epithelial barrier, which allows pathogens access to the systemic environment1,2. In addition, mucosal infections can also cause significant immunopathology even when contained externally3-5. The commensal unicellular fungus Candida albicans is present in the majority of the population in the oral cavity and other mucosal sites6-9. Although normally contained by innate and adaptive immune responses, innate immune defects and medical interventions can lead to severe mucosal candidiasis. The assault on the epithelial barrier results in an increased risk of life threatening disseminated disease as well as immunopathology, as in the case of vulvo-vaginal candidiasis, additionally C. albicans colonization has been linked with lung immune homeostasis10,11. Disseminated candidiasis is now the fourth most common bloodstream infection in intensive care units12 and mortality as high as 40% makes it a major concern. Due to the increase in immunomodulatory treatments for patients with autoimmune diseases, cancer or organ transplants, it is imperative to understand the interaction between this pathogen and the mucosal immune compartment.

The majority of cell biological advances regarding C. albicans-cell interactions at the mucosal level come from in vitro13-15 and murine models16-18. Both these approaches have distinct advantages, but the ability to image live cells at high resolution in an intact host has limited the temporal and spatial characterization of the infection. For these studies, there is the need for an in vivo model where the interaction of pathogen, innate immune and epithelial cells can be visualized in an intact vertebrate host.

The zebrafish has emerged as an invaluable tool for the understanding of human disease, mainly due to its transparency and amenability to genetic manipulation. Cell and organ development have been imaged in exquisite detail, which has led to the description of novel immune cell behaviors, such as T cell behavior in the developing thymus19 or the battle between intracellular mycobacteria and phagocytes20-22. Recent work has described intestinal microbe-host interactions in zebrafish and shown that microbial colonization of the intestinal tract affects host intestinal physiology and resistance to other infections23,24. Furthermore, infection through the gut epithelium has been described for several pathogens.

In contrast to the intestinal tract, the swimbladder represents a more isolated and complementary mucosal model. This organ is an extension of the developing gut tube and forms anteriorly to the liver and pancreas25,26. It produces surfactant, mucus and antimicrobial peptides27,28 and anatomically, as well as ontogenetically, this organ is considered a homologue of the mammalian lung29,30. Since the pneumatic duct remains connected to the gut in the zebrafish, this allows for immersion infection to occur naturally. Remarkably, the only known naturally occurring infections of fish with Candida species are C. albicans infections in the swimbladder31. We recently described an experimental immersion infection model where C. albicans infects the swimbladder, and found that this infection recapitulates some of the hallmarks of C. albicans-epithelial interaction in vitro32,33.

In the method presented here, the original immersion infection model is improved by directly injecting C. albicans into the swimbladder of 4 days post fertilization (dpf) zebrafish. This allows for precise temporal control of infection as well as a highly reproducible inoculum. It permits detailed intravital imaging, coupled with the versatility of the zebrafish model. As an example of what can be done with this method, we present the spatio-temporal dynamics of C. albicans growth along with neutrophil recruitment to the site of infection. Because zebrafish swimbladder tissue is challenging to image intravitally, we also present a rapid swimbladder dissection technique that improves fluorescence signal and microscopic resolution. These methods expand the toolbox for fungal, immunological, and aquaculture research as well as describing a novel infection route that may be translated to model other fungal, bacterial or viral infections of mucosal surfaces.

Protocol

注:すべてのゼブラフィッシュケアプロトコルおよび実験は施設内動物管理使用委員会(IACUC)プロトコルA2012-11-03下のNIHガイドラインに従って行った。 4日後に受精1.ゼブラフィッシュ飼育別の映像34に示すように、最初の3時間後に受精内、ABゼブラフィッシュ、または任意の他のトランスジェニック系統を収集する。 (; 0.17ミリモルのKCl、0.33のC…

Representative Results

後部浮袋でマイクロインジェクションここに提示された実験方法はC.一貫した用量の注射を記載ゼブラフィッシュのDPF 4の浮袋でアルビカンス酵母細胞。イマージョンモデルと以前の研究は、Cに浮袋免疫応答を示唆しているアルビカンスは、哺乳類の粘膜カンジダ症32と同様である。ここでは、より多くの、簡単な再現性があり、迅速であ…

Discussion

浮袋のマイクロインジェクション疾患モデルの進歩と限界

ここで紹介するモデルは、Gratacap に記載粘膜カンジダ症浸漬モデルの拡張である(2013)。それは、制御された感染時間、再現性の高い感染量、したがって、改善された効率の利点が追加されます。ここでは、非侵襲非常に詳細に感染動態の時間的なドキュメントだけでなく、より高解像度浮袋のe…

Disclosures

The authors have nothing to disclose.

Acknowledgements

私たちは彼の研究室で撮影を行うことを可能にするためシトリンの魚のラインとビル·ジャックマン:著者は、寛大にαカテニンを提供するための博士ルトリン博士とトービンに感謝。著者は、資金源国立衛生研究所(助成5P20RR016463、8P20GM103423とR15AI094406)とUSDAを認める(プロジェクト#ME0-H-1-00517-13)。この原稿は、メイン農林試験場公開番号3371として公開されている。

Materials

Name Company Catalog Number Comments
1.7 mL tubes Axygen MCT-175-C
Deep Petri dishes Fisher Scientific 89107-632
Transfer pipettes Fisher Scientific 13-711-7M
Yeast Extract VWR Scientific 90000-726
Peptone VWR Scientific 90000-264
Dextrose Fisher Scientific D16-1
Agar VWR Scientific 90000-760
Fine tweezers (Dumont Dumoxel #5) Fine Science Tools 11251-30
Wooden Dowels VWR Scientific 10805-018
Low Melt Agarose VWR Scientific 12001-722
Flaming Brown Micropipette Puller Sutter Instruments P-97
Borosilicate capillary Sutter Instruments BF120-69-10
MPPI-3 Injection system Applied Scientific Instrumentation MPPI-3
Back Pressure Unit Applied Scientific Instrumentation BPU
Micropipette Holder kit Applied Scientific Instrumentation MPIP
Foot Switch Applied Scientific Instrumentation FSW
Micromanipulator Applied Scientific Instrumentation MM33
Magnetic Base Applied Scientific Instrumentation Magnetic Base
Tricaine methane sulfonate Western Chemical Inc. MS-222
Dissecting Scope Olympus SZ61 top SZX-ILLB2-100 base
Confocal Microscope Olympus IX-81 with FV-1000 laser scanning confocal system
20x microscope objective Olympus UPlanSApo 20x/0.75
Roller drum New Brunswick Scientific TC-7
Microloader pipette tips Eppendorf 930001007
Glass culture tubes (16 x 150 mm) VWR Scientific 60825-435
NaCl VWR Scientific BDH4534-500GP
KCl VWR Scientific BDH4532-500GP
MgSO4 VWR Scientific BDH0246-500GP
HEPES (Corning) VWR Scientific BDH4520-500GP
Children clay (Play-Doh) Hasbro
CaCl2 Fisher Scientific C69-500
Methylene Blue VWR Scientific VW6276-0
PTU Sigma P7629-10G
Petri dishes Fisher Scientific FB0875712
Hemocytometer (Hausser scientific) VWR Scientific 15170-172
Type A immersion oil Blue Marble Products 51935
Centrifuge Eppendorf 5424
Vortex Genie VWR Scientific 14216-184
Agarose (Lonza) VWR Scientific 12001-870
Na2HPO4 Fisher Scientific S374-500
KH2PO4 Fisher Scientific P285-500
Fishing wire Stren
96 well imaging plate (Sensoplate) Greiner Bio-One 655892
High vacuum grease (Dow Corning) VWR Scientific 59344-055
Microslide (25 x 75 mm) VWR Scientific 48300-025
Cover slips (18 x 18 mm), No 1.5 VWR Scientific 48366-045
15 cm Petri dish (Olympus plastics) Genesee Scientific 32-106
Glycerol (EMD chemicals) VWR Scientific EMGX0185-5
24-well culture dish (Olympus plastics) Genesee Scientific 25-107
Weight boats (8.9 cm) VWR Scientific 89106-766

References

  1. Peterson, L. W., Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 14 (3), 141-153 (2014).
  2. Elinav, E., Henao-Mejia, J., Flavell, R. A. Integrative inflammasome activity in the regulation of intestinal mucosal immune responses. Mucosal Immunol. 6 (1), 4-13 (2013).
  3. Sansonetti, P. J. To be or not to be a pathogen: that is the mucosally relevant question. Mucosal Immunol. 4 (1), 8-14 (2011).
  4. Tlaskalová-Hogenová, H., Stěpánková, R., et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol. 8 (2), 110-120 (2011).
  5. Pasparakis, M. Regulation of tissue homeostasis by NF-kappaB signalling: implications for inflammatory diseases. Nat Rev Immunol. 9 (11), 778-788 (2009).
  6. Scully, C., el-Kabir, M., Samaranayake, L. P. Candida and oral candidosis: a review. Crit Rev Oral Biol Med. 5 (2), 125-157 (1994).
  7. Reef, S. E., Lasker, B. A., et al. Nonperinatal nosocomial transmission of Candida albicans in a neonatal intensive care unit: prospective study. J Clin Microbiol. 36 (5), 1255-1259 (1998).
  8. Soll, D. R., Galask, R., Schmid, J., Hanna, C., Mac, K., Morrow, B. Genetic dissimilarity of commensal strains of Candida spp. carried in different anatomical locations of the same healthy women. J Clin Microbiol. 29 (8), (1991).
  9. Rindum, J. L., Stenderup, A., Holmstrup, P. Identification of Candida albicans types related to healthy and pathological oral mucosa. J Oral Pathol Med. 23 (9), 406-412 (1994).
  10. Mear, J. B., Gosset, P., et al. Candida albicans airway exposure primes the lung innate immune response against Pseudomonas aeruginosa infection through innate lymphoid cell recruitment and IL-22 associated mucosal response. Infect Immun. 82 (1), 306-315 (2013).
  11. Faro-Trindade, I., Willment, J. A., et al. Characterisation of innate fungal recognition in the lung. PLoS ONE. 7 (4), 35675 (2012).
  12. Wisplinghoff, H., Bischoff, T., Tallent, S. M., Seifert, H., Wenzel, R. P., Edmond, M. B. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 39 (3), 309-317 (2004).
  13. Schaller, M., Zakikhany, K., Naglik, J. R., Weindl, G., Hube, B. Models of oral and vaginal candidiasis based on in vitro reconstituted human epithelia. Nat Protoc. 1 (6), 2767-2773 (2006).
  14. Weindl, G., Naglik, J. R., et al. Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. Clin Invest. 117 (12), 3664-3672 (2007).
  15. Moyes, D. L., Runglall, M., et al. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host and Microbe. 8 (3), 225-235 (2010).
  16. Conti, H. R., Shen, F., et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med. 206 (2), 299-311 (2009).
  17. Hise, A. G., Tomalka, J., et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe. 5 (5), 487-497 (2009).
  18. Gladiator, A. A., Wangler, N. N., Trautwein-Weidner, K. K., Leibundgut-Landmann, S. S. Cutting Edge: IL-17-Secreting Innate Lymphoid Cells Are Essential for Host Defense against Fungal Infection. J Immunol. 190 (2), 521-525 (2013).
  19. Hess, I., Boehm, T. Intravital imaging of thymopoiesis reveals dynamic lympho-epithelial interactions. Immunity. 36 (2), 298-309 (2012).
  20. Roca, F. J., Ramakrishnan, L. TNF Dually Mediates Resistance and Susceptibility to Mycobacteria via Mitochondrial Reactive Oxygen Species. Cell. 153 (3), 521-534 (2013).
  21. Tobin, D. M., Vary, J. C., et al. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell. 140 (5), 717-730 (2010).
  22. Cambier, C. J., Takaki, K. K., et al. Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature. 505 (7482), 218-222 (2014).
  23. Semova, I., Carten, J. D., et al. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host and Microbe. 12 (3), 277-288 (2012).
  24. Rendueles, O., Ferrières, L., et al. A new zebrafish model of Oro-intestinal pathogen colonization reveals a key role for adhesion in protection by probiotic bacteria. PLoS Pathog. 8 (7), 1002815 (2012).
  25. Field, H., Ober, E., Roeser, T., Stainier, D. Formation of the digestive system in zebrafish I. Liver morphogenesis. Dev Biol. 253 (2), 279-290 (2003).
  26. Field, H., Dong, P., Beis, D., Stainier, D. Formation of the digestive system in zebrafish. Dev Biol. 261 (1), 197-208 (2003).
  27. Sullivan, L., Daniels, C., Phillips, I., Orgeig, S., Whitsett, J. Conservation of surfactant protein A: evidence for a single origin for vertebrate pulmonary surfactant. J Mol Evol. 46 (2), 131-138 (1998).
  28. Oehlers, S. H., Flores, M. V., Chen, T., Hall, C. J., Crosier, K. E., Crosier, P. S. Topographical distribution of antimicrobial genes in the zebrafish intestine. Dev Comp Immunol. 35 (3), 385-391 (2011).
  29. Winata, C., Korzh, S., Kondrychyn, I., Zheng, W., Korzh, V., Gong, Z. Development of zebrafish swimbladder: The requirement of Hedgehog signaling in specification and organization of the three tissue layers. Dev Biol. 331 (2), 22-236 (2009).
  30. Zheng, W., Wang, Z., Collins, J. E., Andrews, R. M., Stemple, D., Gong, Z. Comparative transcriptome analyses indicate molecular homology of zebrafish swimbladder and mammalian lung. PLoS ONE. 6 (8), 24019 (2011).
  31. Galuppi, R., Fioravanti, M., Delgado, M., Quaglio, F., Caffara, M., Tampieri, M. Segnalazione di due casi do micosi della vescica natatoria in Sparus aurata e Carrassius auratus. Bollettino Societa Italiana di Patologic. 32, 26-34 (2001).
  32. Gratacap, R. L., Rawls, J. F., Wheeler, R. T. Mucosal candidiasis elicits NF-κB activation, proinflammatory gene expression and localized neutrophilia in zebrafish. Dis Model Mech. 6 (5), 1260-1270 (2013).
  33. Brothers, K. M., Gratacap, R. L., Barker, S. E., Newman, Z. R., Norum, A., Wheeler, R. T. NADPH oxidase-driven phagocyte recruitment controls Candida albicans filamentous growth and prevents mortality. PLoS Pathog. 9 (10), (2013).
  34. Rosen, J. N., Sweeney, M. F., Mably, J. D. Microinjection of zebrafish embryos to analyze gene function. J. Vis. Exp. (25), (2009).
  35. Anaissie, E. J., Bodey, G. P. Fungal infections in patients with cancer. Pharmacotherapy. 10 (6 pt 3), 1648-1698 (1990).
  36. Fidel, P. L., Barousse, M., et al. An intravaginal live Candida challenge in humans leads to new hypotheses for the immunopathogenesis of vulvovaginal candidiasis. Infect Immun. 72 (5), 2939-2946 (2004).
  37. Akova, M., Akalin, H. E., et al. Efficacy of fluconazole in the treatment of upper gastrointestinal candidiasis in neutropenic patients with cancer: factors influencing the outcome. Clin Infect Dis. 18 (3), 298-304 (1994).
  38. Farah, C. S., Elahi, S., et al. T cells augment monocyte and neutrophil function in host resistance against oropharyngeal candidiasis. Infect Immun. 69 (10), 6110-6118 (2001).
  39. Renshaw, S. A., Loynes, C. A., Trushell, D. M. I., Elworthy, S., Ingham, P. W., Whyte, M. K. B. A transgenic zebrafish model of neutrophilic inflammation. Blood. 108 (13), 3976-3978 (2006).
  40. Kanther, M., Sun, X., et al. Microbial Colonization Induces Dynamic Temporal and Spatial Patterns of NF-κB Activation in the Zebrafish Digestive Tract. Gastroenterology. 141 (1), 197-207 (2011).
  41. Trinh, L. A., Hochgreb, T., et al. A versatile gene trap to visualize and interrogate the function of the vertebrate proteome. Genes Dev. 25 (21), 2306-2320 (2011).
  42. Trinh, L. A., Fraser, S. E., Moens, C. B. Zebrafish Neural Tube Morphogenesis Requires Scribble-Dependent Oriented Cell Divisions. Curr Biol. 21 (1), 79-86 (2011).
  43. Oehlers, S. H. B., Flores, M. V., et al. Expression of zebrafish cxcl8 (interleukin-8) and its receptors during development and in response to immune stimulation. Dev Comp Immunol. 34 (3), 352-359 (2010).
  44. Bast, D. J., Yue, M., et al. Novel murine model of pneumococcal pneumonia: use of temperature as a measure of disease severity to compare the efficacies of moxifloxacin and levofloxacin. Antimicrob Agents Chemother. 48 (9), 3343-3348 (2004).
  45. Davis, J., Clay, H., Lewis, J., Ghori, N., Herbomel, P., Ramakrishnan, L. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity. 17 (6), 693-702 (2002).
  46. Pack, M., Solnica-Krezel, L., et al. Mutations affecting development of zebrafish digestive organs. Development. 123, 321-328 (1996).
  47. Le Guyader, D., Redd, M. J., et al. Origins and unconventional behavior of neutrophils in developing zebrafish. Blood. 111 (1), 132-141 (2008).
  48. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F. Stages of embryonic development of the zebrafish. Dev Dyn. 203 (3), 253-310 (1995).
  49. Parichy, D. M., Elizondo, M. R., Mills, M. G., Gordon, T. N., Engeszer, R. E. Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish. Dev Dyn. 238 (12), 2975-3015 (2009).
  50. Noverr, M. C., Huffnagle, G. B. Does the microbiota regulate immune responses outside the gut. Trends in Microbiology. 12 (12), 562-568 (2004).
  51. Huffnagle, G. B. The microbiota and allergies/asthma. PLoS Pathog. 6 (5), 1000549 (2010).
  52. Kim, Y. -. G., Udayanga, K. G. S., Totsuka, N., Weinberg, J. B., Núñez, G., Shibuya, A. Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE2. Cell Host Microbe. 15 (1), 95-102 (2014).

Play Video

Cite This Article
Gratacap, R. L., Bergeron, A. C., Wheeler, R. T. Modeling Mucosal Candidiasis in Larval Zebrafish by Swimbladder Injection. J. Vis. Exp. (93), e52182, doi:10.3791/52182 (2014).

View Video