In vivo spatio-temporal interactions of pathogen and immune defenses at the mucosal level are not easily imaged in existing vertebrate hosts. The method presented here describes a versatile platform to study mucosal candidiasis in live vertebrates using the swimbladder of the juvenile zebrafish as an infection site.
粘膜病原体に対する初期の防衛は上皮バリアと自然免疫細胞の両方で構成されています。両方の免疫適格、と彼らの相互通信は、感染症に対する保護のための最も重要である。病原体上皮および自然免疫細胞の相互作用は最高の複雑な挙動は、時間と空間に繰り広げられる、生体内 、 で調査されている。しかし、既存のモデルは、粘膜レベルでの病原体との戦いの容易な時空間的イメージングを可能にしない。
ここで開発されたモデルは、少年ゼブラフィッシュの浮袋に、真菌病原体、 カンジダ·アルビカンスの直接注射により粘膜感染が作成されます。得られた感染は、上皮および粘膜疾患の発生を通じて自然免疫細胞の挙動の高分解能イメージングを可能にする。この方法の汎用性は、pHをもたらす免疫イベントの詳細なシーケンスをプローブするホストの尋問が可能にagocyte動員および保護において、特定の細胞タイプおよび分子経路の役割を検討する。また、免疫攻撃の関数としての病原体の挙動は、蛍光タンパク質を発現するC.で同時に撮像することができるアルビカンス 。宿主 – 病原体相互作用の増大した空間分解能について迅速浮袋切開技術を用いても可能である。
ここで説明粘膜感染モデルは、粘膜カンジダ症の研究のための貴重なツール作り、簡単な再現性の高いです。このシステムはまた、マイコバクテリア、正常上皮表面を介して感染する細菌またはウイルス、微生物などの他の粘膜病原体に広く翻訳可能であってもよい。
Mucosal infections can lead to life threatening bloodstream infections due to the damage of the epithelial barrier, which allows pathogens access to the systemic environment1,2. In addition, mucosal infections can also cause significant immunopathology even when contained externally3-5. The commensal unicellular fungus Candida albicans is present in the majority of the population in the oral cavity and other mucosal sites6-9. Although normally contained by innate and adaptive immune responses, innate immune defects and medical interventions can lead to severe mucosal candidiasis. The assault on the epithelial barrier results in an increased risk of life threatening disseminated disease as well as immunopathology, as in the case of vulvo-vaginal candidiasis, additionally C. albicans colonization has been linked with lung immune homeostasis10,11. Disseminated candidiasis is now the fourth most common bloodstream infection in intensive care units12 and mortality as high as 40% makes it a major concern. Due to the increase in immunomodulatory treatments for patients with autoimmune diseases, cancer or organ transplants, it is imperative to understand the interaction between this pathogen and the mucosal immune compartment.
The majority of cell biological advances regarding C. albicans-cell interactions at the mucosal level come from in vitro13-15 and murine models16-18. Both these approaches have distinct advantages, but the ability to image live cells at high resolution in an intact host has limited the temporal and spatial characterization of the infection. For these studies, there is the need for an in vivo model where the interaction of pathogen, innate immune and epithelial cells can be visualized in an intact vertebrate host.
The zebrafish has emerged as an invaluable tool for the understanding of human disease, mainly due to its transparency and amenability to genetic manipulation. Cell and organ development have been imaged in exquisite detail, which has led to the description of novel immune cell behaviors, such as T cell behavior in the developing thymus19 or the battle between intracellular mycobacteria and phagocytes20-22. Recent work has described intestinal microbe-host interactions in zebrafish and shown that microbial colonization of the intestinal tract affects host intestinal physiology and resistance to other infections23,24. Furthermore, infection through the gut epithelium has been described for several pathogens.
In contrast to the intestinal tract, the swimbladder represents a more isolated and complementary mucosal model. This organ is an extension of the developing gut tube and forms anteriorly to the liver and pancreas25,26. It produces surfactant, mucus and antimicrobial peptides27,28 and anatomically, as well as ontogenetically, this organ is considered a homologue of the mammalian lung29,30. Since the pneumatic duct remains connected to the gut in the zebrafish, this allows for immersion infection to occur naturally. Remarkably, the only known naturally occurring infections of fish with Candida species are C. albicans infections in the swimbladder31. We recently described an experimental immersion infection model where C. albicans infects the swimbladder, and found that this infection recapitulates some of the hallmarks of C. albicans-epithelial interaction in vitro32,33.
In the method presented here, the original immersion infection model is improved by directly injecting C. albicans into the swimbladder of 4 days post fertilization (dpf) zebrafish. This allows for precise temporal control of infection as well as a highly reproducible inoculum. It permits detailed intravital imaging, coupled with the versatility of the zebrafish model. As an example of what can be done with this method, we present the spatio-temporal dynamics of C. albicans growth along with neutrophil recruitment to the site of infection. Because zebrafish swimbladder tissue is challenging to image intravitally, we also present a rapid swimbladder dissection technique that improves fluorescence signal and microscopic resolution. These methods expand the toolbox for fungal, immunological, and aquaculture research as well as describing a novel infection route that may be translated to model other fungal, bacterial or viral infections of mucosal surfaces.
浮袋のマイクロインジェクション疾患モデルの進歩と限界
ここで紹介するモデルは、Gratacap らに記載粘膜カンジダ症浸漬モデルの拡張である(2013)。それは、制御された感染時間、再現性の高い感染量、したがって、改善された効率の利点が追加されます。ここでは、非侵襲非常に詳細に感染動態の時間的なドキュメントだけでなく、より高解像度浮袋のe…
The authors have nothing to disclose.
私たちは彼の研究室で撮影を行うことを可能にするためシトリンの魚のラインとビル·ジャックマン:著者は、寛大にαカテニンを提供するための博士ルトリン博士とトービンに感謝。著者は、資金源国立衛生研究所(助成5P20RR016463、8P20GM103423とR15AI094406)とUSDAを認める(プロジェクト#ME0-H-1-00517-13)。この原稿は、メイン農林試験場公開番号3371として公開されている。
Name | Company | Catalog Number | Comments |
1.7 mL tubes | Axygen | MCT-175-C | |
Deep Petri dishes | Fisher Scientific | 89107-632 | |
Transfer pipettes | Fisher Scientific | 13-711-7M | |
Yeast Extract | VWR Scientific | 90000-726 | |
Peptone | VWR Scientific | 90000-264 | |
Dextrose | Fisher Scientific | D16-1 | |
Agar | VWR Scientific | 90000-760 | |
Fine tweezers (Dumont Dumoxel #5) | Fine Science Tools | 11251-30 | |
Wooden Dowels | VWR Scientific | 10805-018 | |
Low Melt Agarose | VWR Scientific | 12001-722 | |
Flaming Brown Micropipette Puller | Sutter Instruments | P-97 | |
Borosilicate capillary | Sutter Instruments | BF120-69-10 | |
MPPI-3 Injection system | Applied Scientific Instrumentation | MPPI-3 | |
Back Pressure Unit | Applied Scientific Instrumentation | BPU | |
Micropipette Holder kit | Applied Scientific Instrumentation | MPIP | |
Foot Switch | Applied Scientific Instrumentation | FSW | |
Micromanipulator | Applied Scientific Instrumentation | MM33 | |
Magnetic Base | Applied Scientific Instrumentation | Magnetic Base | |
Tricaine methane sulfonate | Western Chemical Inc. | MS-222 | |
Dissecting Scope | Olympus | SZ61 top SZX-ILLB2-100 base | |
Confocal Microscope | Olympus | IX-81 with FV-1000 laser scanning confocal system | |
20x microscope objective | Olympus | UPlanSApo 20x/0.75 | |
Roller drum | New Brunswick Scientific | TC-7 | |
Microloader pipette tips | Eppendorf | 930001007 | |
Glass culture tubes (16 x 150 mm) | VWR Scientific | 60825-435 | |
NaCl | VWR Scientific | BDH4534-500GP | |
KCl | VWR Scientific | BDH4532-500GP | |
MgSO4 | VWR Scientific | BDH0246-500GP | |
HEPES (Corning) | VWR Scientific | BDH4520-500GP | |
Children clay (Play-Doh) | Hasbro | ||
CaCl2 | Fisher Scientific | C69-500 | |
Methylene Blue | VWR Scientific | VW6276-0 | |
PTU | Sigma | P7629-10G | |
Petri dishes | Fisher Scientific | FB0875712 | |
Hemocytometer (Hausser scientific) | VWR Scientific | 15170-172 | |
Type A immersion oil | Blue Marble Products | 51935 | |
Centrifuge | Eppendorf | 5424 | |
Vortex Genie | VWR Scientific | 14216-184 | |
Agarose (Lonza) | VWR Scientific | 12001-870 | |
Na2HPO4 | Fisher Scientific | S374-500 | |
KH2PO4 | Fisher Scientific | P285-500 | |
Fishing wire | Stren | ||
96 well imaging plate (Sensoplate) | Greiner Bio-One | 655892 | |
High vacuum grease (Dow Corning) | VWR Scientific | 59344-055 | |
Microslide (25 x 75 mm) | VWR Scientific | 48300-025 | |
Cover slips (18 x 18 mm), No 1.5 | VWR Scientific | 48366-045 | |
15 cm Petri dish (Olympus plastics) | Genesee Scientific | 32-106 | |
Glycerol (EMD chemicals) | VWR Scientific | EMGX0185-5 | |
24-well culture dish (Olympus plastics) | Genesee Scientific | 25-107 | |
Weight boats (8.9 cm) | VWR Scientific | 89106-766 |