Summary

PAD4活动通过亲荧光底物类似物基于荧光监测

Published: November 05, 2014
doi:

Summary

PAD4 is an enzyme responsible for the conversion of peptidyl-arginine to peptidyl-citrulline. Dysregulation of PAD4 has been implicated in a number of human diseases. A facile and high-throughput compatible fluorescence based PAD4 assay is described.

Abstract

Post-translational modifications may lead to altered protein functional states by increasing the covalent variations on the side chains of many protein substrates. The histone tails represent one of the most heavily modified stretches within all human proteins. Peptidyl-arginine deiminase 4 (PAD4) has been shown to convert arginine residues into the non-genetically encoded citrulline residue. Few assays described to date have been operationally facile with satisfactory sensitivity. Thus, the lack of adequate assays has likely contributed to the absence of potent non-covalent PAD4 inhibitors. Herein a novel fluorescence-based assay that allows for the monitoring of PAD4 activity is described. A pro-fluorescent substrate analog was designed to link PAD4 enzymatic activity to fluorescence liberation upon the addition of the protease trypsin. It was shown that the assay is compatible with high-throughput screening conditions and has a strong signal-to-noise ratio. Furthermore, the assay can also be performed with crude cell lysates containing over-expressed PAD4.

Introduction

大量的哺乳动物蛋白质都很大程度上受到酶的下列蛋白质的核糖体的生物合成中的作用进行修改。这些翻译后修饰(翻译后修饰),可以通过改变蛋白1-3的大小,电荷,结构,和低聚状态(除其他特征),大大提高了蛋白质的功能多样性。其结果是,在蛋白质结构中的改变可以导致生理后果,如蛋白降解,细胞分化,信号传导,调节基因表达,和蛋白质 – 蛋白质相互作用。而这些修改都是在所有人类蛋白质所占的比例很大普及,终端结束对组蛋白进行非常多的共价修饰4。组蛋白是一族结构蛋白,以促进基因组DNA的缩合的。非结构化组蛋白尾巴的共价修饰都进行了规范,并通过意甲酶可以催化残基(刻录机)的共价修饰,反向相同的修改(橡皮擦),以及其中的变化区分号被印记到组蛋白尾部(读卡器)5-7。事实上,大多数已知的翻译后修饰可以在组蛋白包括甲基化,磷酸化,乙酰化,SUMO化,泛素化,和瓜氨酸化8的这个短段内被观察到。

瓜氨酸化涉及肽基精氨酸转化成非的RNA编码的肽基-瓜氨酸( 图1A)。的蛋白质,负责该侧链中和,是PAD的成员对eptide 一个rginineðeiminase)蛋白家族,所有这些都是钙依赖性酶。9,10。到今天为止,PAD家庭的五名成员已被描述(PAD1,PAD2,PAD3,PAD4和PAD6)。这个家庭的每个成员似乎针对不同的细胞蛋白质,并显示单阙组织分布概况。 PAD4是该蛋白家族已知细胞核内通过一个核定位序列11的局部的唯一成员。因此,它已被证明deiminate若干核目标,包括对组蛋白H2A的精氨酸残基3的N末端 ​​尾部精氨酸侧链(H2R3),H3(H3R2,H3R17和H3R26)和H4(H4R3)12 13。而每个PAD同功酶具有特异性和一些重要的生理功能,PAD4已经获得相当多的关注,因为它在一个数均患病和健康细胞的人性化过程的作用。最近,PAD4被证明是多能性的转录网络14中的一员。既PAD4表达水平和活性示期间小鼠重编程和基态的多潜能状态升高。通过控制干细胞的基因的调节,PAD4可保留在细胞的重编程效率的关键作用。 PAD4也被牵连在形成中性粒细胞胞外的陷阱,对病原体结合后,使他们的系统过关。组蛋白通过PAD4的hypercitrullination诱导染色质,其作为用于病原性细菌的胞外陷阱的封装基体材料的解聚,从而抵挡细菌感染15,16。

此外,PAD4已经发现了一些人类疾病方面发挥积极作用。先前已证明,PAD4的异常表达与类风湿性关节炎的发病和严重程度相关联,阿尔茨海默氏症,帕金森氏病和多发性硬化17。事实上,抗瓜氨酸化蛋白的抗体的存在是类风湿性关节炎18的最可靠的和明确的诊断和预后标志物之 ​​一。同样的,失调的PAD4的活性最近已经在许多人类癌症中,包括卵巢癌,乳腺癌,肺癌,被观察ð食管癌19-22。 PAD4和癌症之间的联系已经显示出通过ELK1癌基因或经由p53肿瘤抑制蛋白22,23介导的和以前的工作已经表明,PAD4可能是一个新的抗癌治疗靶17,24,25。原则研究证明,PAD4通过的shRNA在结肠癌细胞株HCT116枯竭显露足以诱导细胞凋亡和细胞周期阻滞26。最近发展不可逆转的PAD4抑制剂导致肿块的小鼠27减少70%左右。很明显,PAD4抑制似乎充当靶向治疗,导致选择性杀伤癌细胞的同时保留未转化的细胞。

使用小分子来关闭PAD4的功能可能被证明是一个强大的新策略,以靶向癌细胞或以增加现有的癌症化学治疗剂28。不幸的是,一个PO10吨可逆PAD4抑制剂尚未被发现。使用氯/氟imidine手柄模仿精氨酸基板27,29,30和已被证明是实用的工具,理解健康和患病状态的细胞PAD4的作用已经开发了一些共价抑制剂。但是,这些分子抑制它们都具有类似功效的活性垫。因此,需要有一种简便的测定上PAD4的活性,报告是至关重要的。迄今为止,PAD4测定法已描述了从反应的比色读出31连结氨的释放,利用荧光标记的chloroamidine底物类似物为荧光偏振测定法32,依靠乙二醛和瓜氨酸33之间的酸-促进反应,并夫妇PAD4活性荧光脱猝灭步骤34。其中,只有共价修饰haloacetamidine策​​略已被证明是与高通量SCRE兼容效果图创作平台32,35,36。我们描述一个浅显的基于荧光检测的可靠测量PAD4的活性。该测定法中,其显示很强的信号 – 噪声比,分析速度,和测量的鲁棒性,具有以发现真正有效的和选择性PAD4抑制剂的潜力。

Protocol

1. PAD4改造,表达和纯化对于PAD4改造,改造PAD4含GST融合到化学感受态中的pGEX质粒大肠杆菌 (BL21(DE3))细胞,使用以下过程蛋白质表达。准备化学感受(氯化钙)E.根据标准方法, 大肠杆菌 (BL21(DE3))的细胞。 解冻加入50μl预先制备的化学感受态大肠杆菌BL21(DE3)细胞在冰上,并用1微升含有PAD4基因中有5毫升培养管中的质粒pGEX质粒混合。在冰上孵?…

Representative Results

最初,它被证明ZRcoum可以在96孔板形式的PAD4的酶活性的报告。孔用基板ZRcoum并在存在/不存在PAD4的。以下的45分钟,在37℃温育期间,荧光用一个四十〇分之三百四十零测定-一十五分之四百七十五纳米过滤器( 图2A)。正如所料,荧光水平保持最低值内ZRcoum(或瓜氨酸ZRcoum)的荧光团保持在锁定状态。一旦加入过量的胰蛋白酶/ EDTA的?…

Discussion

Herein, a fluorescence based assay was successfully developed that monitors the activity of PAD4. The assay has proven to be incredibly robust in a number of high-throughput conditions and is also compatible with whole cell lysates37.

The affinity between the histone proteins and the DNA strands surrounding it loosens due the neutralization of the positive charge on the arginine side chain upon citrullination. It was envisioned that the neutralization of the arginine side-chain coul…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Lehigh University Start-up Package. We thank Dr. Walter Fast for providing the GST-PAD4 plasmid for protein expression.

Materials

Name of the Material/Equipment Company Catalog Number Comments/ Description
LB Broth, Miller (LURIA-BERTANI) Amresco J106-2KG http://www.amresco-inc.com
Ampicillin Trihydrate (Off-white Powder), Fisher BioReagents Fisher Scientific BP902-25  http://www.fishersci.com
Isopropylthiagalactonse (IPTG) Life Technogolies 15529-019 http://www.lifetechnologies.com
All Buffer Salts  Fisher Scientific N/A Can purchase from Fisher Scieintifc; VWR; Acros; Sigma-Aldrich; etc.
Protino Glutathione (GSH) agarose  Machery-Nagel 745500.10 Store at 4 °C; http://www.mn-net.com/
Z-​Arg-​Arg-​7-​amido-​4-​methylcoumarin hydrochloride (Zcoum) Sigma Aldrich C5429 www.sigmaaldrich.com
Chloroamidine  Cayman Chemical  10599 Store at -20 °C; https://www.caymanchem.com/app/template/Home.vm
Tris(2-​carboxyethyl)​phosphine hydrochloride (TCEP HCl) Thermo Scientifc 20490 http://www.piercenet.com
Triton X-100 Sigma Aldrich X100-100ML www.sigmaaldrich.com
Corning/Nunclon MicroWell plates (96 and 384) N/A N/A Purchase from Corning; Sigma-Aldrich
Tecan Infinite 200 / Tecan i-control microplate reader software N/A N/A www.tecan.com
Europium Ex. 340/40 Em. 475/15 filter N/A N/A http://www.perkinelmer.com

References

  1. Jensen, O. N. Interpreting the protein language using proteomics. Nat. Rev. Mol. Cell Biol. 7, 391-403 (2006).
  2. Sims, R. J., Reinberg, D. Is there a code embedded in proteins that is based on post-translational modifications. Nat. Rev. Mol. Cell Biol. 9, 815-820 (2008).
  3. Pandey, A., Mann, M. Proteomics to study genes and genomes. Nature. 405, 837-846 (2000).
  4. Berger, S. L. The complex language of chromatin regulation during transcription. Nature. 447, 407-412 (2007).
  5. Fischle, W., Wang, Y., Allis, C. D. Binary switches and modification cassettes in histone biology and beyond. Nature. 425, 475-479 (2003).
  6. Taverna, S. D., Li, H., Ruthenburg, A. J., Allis, C. D., Patel, D. J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 14, 1025-1040 (2007).
  7. Seet, B. T., Dikic, I., Zhou, M. M., Pawson, T. Reading protein modifications with interaction domains. Nat. Rev. Mol. Cell Biol. 7, 473-483 (2006).
  8. Strahl, B. D., Allis, C. D. The language of covalent histone modifications. Nature. 403, 41-45 (2000).
  9. Vossenaar, E. R., Zendman, A. J., van Venrooij, W. J., Pruijn, G. J. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays. 25, 1106-1118 (2003).
  10. Gyorgy, B., Toth, E., Tarcsa, E., Falus, A., Buzas, E. I. Citrullination: a posttranslational modification in health and disease. Int. J. Biochem. Cell Biol. 38, 1662-1677 (2006).
  11. Nakashima, K., Hagiwara, T., Yamada, M. Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J. Biol. Chem. 277, 49562-49568 (2002).
  12. Hagiwara, T., Hidaka, Y., Yamada, M. Deimination of histone H2A and H4 at arginine 3 in HL-60 granulocytes. 생화학. 44, 5827-5834 (2005).
  13. Kearney, P. L., et al. Kinetic characterization of protein arginine deiminase 4: a transcriptional corepressor implicated in the onset and progression of rheumatoid arthritis. 생화학. 44, 10570-10582 (2005).
  14. Christophorou, M. A., et al. Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature. 507 (7490), 104-108 (2014).
  15. Brinkmann, V., et al. Neutrophil extracellular traps kill bacteria. Science. 303, 1532-1535 (2004).
  16. Li, P., et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207, 1853-1862 (2010).
  17. Wang, Y., et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell. Biol. 184, 205-213 (2009).
  18. Wang, S., Wang, Y. Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. Biochim. Biophys. Acta. 1829, 1126-1135 (2013).
  19. Trouw, L. A., Mahler, M. Closing the serological gap: promising novel biomarkers for the early diagnosis of rheumatoid arthritis. Autoimmun. Rev. 12, 318-322 (2012).
  20. Chang, X., Fang, K. PADI4 and tumourigenesis. Cancer Cell Int. 10, 7 (2010).
  21. Wang, L., Chang, X., Yuan, G., Zhao, Y., Wang, P. Expression of peptidylarginine deiminase type 4 in ovarian tumors. Int. J. Biol. Sci. 6, 454-464 (2010).
  22. Chang, X., et al. Investigating the pathogenic role of PADI4 in oesophageal cancer. Int. J. Biol. Sci. 7, 769-781 (2011).
  23. Zhang, X., et al. Genome-wide analysis reveals PADI4 cooperates with Elk-1 to activate c-Fos expression in breast cancer cells. PLoS Genet. 7, (2011).
  24. Tanikawa, C., et al. Regulation of histone modification and chromatin structure by the p53-PADI4 pathway. Nat. Commun. 3, 676 (2012).
  25. Cui, X., et al. The induction of microRNA-16 in colon cancer cells by protein arginine deiminase inhibition causes a p53-dependent cell cycle arrest. PLos One. 8, (2013).
  26. Jones, J. E., Causey, C. P., Knuckley, B., Slack-Noyes, J. L., Thompson, P. R. Protein arginine deiminase 4 (PAD4): Current understanding and future therapeutic potential. Curr. Opin. Drug Discov. Devel. 12, 616-627 (2009).
  27. Li, P., et al. Regulation of p53 target gene expression by peptidylarginine deiminase 4. Mol. Cell Biol. 28, 4745-4758 (2008).
  28. Wang, Y., et al. Anticancer peptidylarginine deiminase (PAD) inhibitors regulate the autophagy flux and the mammalian target of rapamycin complex 1 activity. J. Biol. Chem. 287, 25941-25953 (2012).
  29. Slack, J. L., Causey, C. P., Thompson, P. R. Protein arginine deiminase 4: a target for an epigenetic cancer therapy. Cell. Mol. Life Sci. 68, 709-720 (2011).
  30. Luo, Y., Knuckley, B., Lee, Y. H., Stallcup, M. R., Thompson, P. R. A fluoroacetamidine-based inactivator of protein arginine deiminase 4: design, synthesis, and in vitro and in vivo evaluation. J. Am. Chem. Soc. 128, 1092-1093 (2006).
  31. Knuckley, B., et al. Substrate specificity and kinetic studies of PADs. 생화학. 1, 4852-4863 (2010).
  32. Knipp, M., Vasak, M. A colorimetric 96-well microtiter plate assay for the determination of enzymatically formed citrulline. Anal. Biochem. 286, 257-264 (2000).
  33. Knuckley, B., et al. A fluopol-ABPP HTS assay to identify PAD inhibitors. Chem. Commun. 46, 7175-7177 (2010).
  34. Bicker, K. L., Subramanian, V., Chumanevich, A. A., Hofseth, L. J., Thompson, P. R. Seeing citrulline: development of a phenylglyoxal-based probe to visualize protein citrullination. J. Am. Chem. Soc. 134, 17015-17018 (2012).
  35. Wang, Q., Priestman, M. A., Lawrence, D. S. Monitoring of protein arginine deiminase activity by using fluorescence quenching: multicolor visualization of citrullination. Angew. Chem. Int. Ed. Engl. 52, 2323-2325 (2013).
  36. Jones, J. E., et al. Synthesis and screening of a haloacetamidine containing library to identify PAD4 selective inhibitors. ACS Chem. Biol. 7, 160-165 (2012).
  37. Dreyton, C. J., et al. . Optimization and characterization of a pan protein arginine deiminase (PAD) inhibitor. , (2010).
  38. Shimoyama, S., et al. Deimination stabilizes histone H2A/H2B dimers as revealed by electrospray ionization mass spectrometry. J. Mass Spectrom. 45, 900-908 (2010).
  39. Luo, Y., et al. Inhibitors and inactivators of protein arginine deiminase 4: functional and structural characterization. 생화학. 45, 11727-11736 (2006).

Play Video

Cite This Article
Sabulski, M. J., Fura, J. M., Pires, M. M. Fluorescence-based Monitoring of PAD4 Activity via a Pro-fluorescence Substrate Analog. J. Vis. Exp. (93), e52114, doi:10.3791/52114 (2014).

View Video