Here we describe our strategy for obtaining stable, well-isolated single-unit recordings from identified inhibitory interneurons in the anesthetized mouse cortex. Neurons expressing ChR2 are identified by their response to blue light. The method uses standard extracellular recording equipment, and serves as an inexpensive alternative to calcium imaging or visually-guided patching.
Eine große Herausforderung in der Neurophysiologie war es, die Reaktionseigenschaften und Funktion der zahlreichen hemmenden Zelltypen in der Großhirnrinde zu charakterisieren. Wir teilen hier unsere Strategie für den Erhalt von stabilen, gut isolierten Single-Unit-Aufnahmen von identifizierten hemmenden Inter im narkotisierten Maus Kortex mit Hilfe eines von Lima und Kollegen 1 entwickelten Methode. Die Aufnahmen werden in Mäusen, Channelrhodopsin-2 (ChR2) in bestimmten neuronalen Subpopulationen durchgeführt. Mitglieder der Population werden durch ihre Reaktion auf einen kurzen Blitz aus blauem Licht identifiziert. Diese Technik – genannt "PINP" oder Photostimulation gestützte Identifizierung von neuronalen Populationen – Verwendbar mit Standard extrazellulären Kontrollgerät durchgeführt werden. Es kann als kostengünstige und leicht zugängliche Alternative zu Calcium Imaging oder visuell geführte Patch dienen, zum Zwecke der Ausrichtung der extrazellulären Aufnahmen genetisch identifizierten Zellen. Hehe wir bieten eine Reihe von Leitlinien für die Optimierung der Verfahren in der täglichen Praxis. Wir verfeinert unsere Strategie speziell für Targeting Parvalbumin-positive (PV +) Zellen, haben aber festgestellt, dass es für andere Intern Typen sowie wie Somatostatin-exprimierenden (SOM +) und Calretinin-exprimierenden (CR +) Inter.
Characterizing the myriad cell types that comprise the mammalian brain has been a central, but long-elusive goal of neurophysiology. For instance, the properties and function of different inhibitory cell types in the cerebral cortex are topics of great interest but are still relatively unknown. This is in part because conventional blind in vivo recording techniques are limited in their ability to distinguish between different cell types. Extracellular spike width can be used to separate putative parvalbumin-positive inhibitory neurons from excitatory pyramidal cells, but this method is subject to both type I and type II errors2,3. Alternatively, recorded neurons can be filled, recovered, and stained to later confirm their morphological and molecular identity, but this is a pain-staking and time-consuming process. Recently, genetically identified populations of inhibitory interneurons have become accessible by means of calcium imaging or visually guided patch recordings. In these approaches, viral or transgenic expression of a calcium reporter (such as GCaMP) or fluorescent protein (such as GFP) allows identification and characterization of cell types defined by promoter expression. These approaches use 2-photon microscopy, which requires expensive equipment, and are also limited to superficial cortical layers due to the light scattering properties of brain tissue.
Recently, Lima and colleagues1 developed a novel application of optogenetics to target electrophysiological recordings to genetically identified neuronal types in vivo, termed “PINP” – or Photostimulation-assisted Identification of Neuronal Populations. Recordings are performed in mice expressing Channelrhodopsin-2 (ChR2) in specific neuronal subpopulations. Members of the population are identified by their response to a brief flash of blue light. Unlike many other optogenetic applications, the goal is not to manipulate circuit function but simply to identify neurons belonging to a genetically-defined class, which can then be characterized during normal brain function. The technique can be implemented with standard extracellular recording equipment and can therefore serve as an accessible and inexpensive alternative to calcium imaging or visually-guided patching. Here we describe an approach to PINPing specific cell types in the anesthetized auditory cortex, with the expectation that the more general points can be usefully applied in other preparations and brain regions.
In cortex, PINP holds particular promise for investigating the in vivo response properties of inhibitory interneurons. GABAergic interneurons comprise a small, heterogeneous subset of cortical neurons4. Different subtypes, marked by the expression of particular molecular markers, have recently been shown to perform different computational roles in cortical circuits5-9. As genetic tools improve it may eventually be possible to distinguish morphologically- and physiologically-separable types that fall within these broad classes. We here share our strategy for obtaining stable, well-isolated single-unit recordings from identified inhibitory interneurons in the anesthetized mouse cortex. This strategy was developed specifically for targeting parvalbumin-positive (PV+) cells, but we have found that it works for other interneuron types as well, such as somatostatin-expressing (SOM+) and calretinin-expressing (CR+) interneurons. Although PINPing is conceptually straightforward, it can be surprisingly unyielding in practice. We learned a number of tips and tricks through trial-and-error that may be useful to others attempting the method.
Although PINP is conceptually straightforward, it can be challenging in practice. A major determinant of success is the choice of electrode. The electrical listening radius is the critical parameter. It must be sufficiently large to detect light-evoked spikes when the tip is still some distance away from a ChR2+ cell, so that one can adjust the rate of advance accordingly. At the same time, it must be restricted enough to enable good single-unit isolation. That is, the electrode must not also pick up spikes from neighbor…
The authors have nothing to disclose.
This work was funded by the Whitehall Foundation and the NIH. We thank Clifford Dax (University of Oregon Technical Support Administration) for his help and expertise in designing a circuit for light delivery.
Name of Material/Equipment | Company | Product/Stock Number | Comments/Description |
ChR2-EYFP Line | Jackson Colonies | 12569 | |
Pvalb-iCre (PV) Line | Jackson Colonies | 8069 | |
Sst-iCre (SOM) Line | Jackson Colonies | 13044 | |
Cr-iCre (CR) Line | Jackson Colonies | 10774 | |
Agarose | Sigma-Aldrich | A9793 | Type III-A, High EEO |
Micro Point (dural hook) | FST | 10066-15 | |
Surgical Scissors | FST | 14084-09 | |
Scalpel | FST | 10003-12 (handle), 10011-00 (blades) | |
Puralube Ophthalmic Ointment | Foster & Smith | 9N-76855 | |
Homeothermic Blanket | Harvard Apparatus | 507220F | |
Tungsten Microelectrodes | A-M Systems | 577200 | 12 MΩ AC resistance, 127 μm diameter, 12° tapered tip, epoxy-coated |
Capillary Glass Tubing | Warner Instruments | G150TF-3 | |
Heat Shrink Tubing | DigiKey | A332B-4-ND | |
Zapit Accelerator | DVA | SKU ZA/ZAA | Use with standard Super Glue. |
Microelectrode AC Amplifier 1800 | AM Systems | 700000 | |
MP-285 Motorized Micromanipulator | Sutter | MP-285 | |
4-channel Digital Oscilloscopes | Tektronix | TDS2000C | |
Powered Speakers | Harman | Model JBL Duet | |
Manual Manipulator | Scientifica | LBM-7 | |
800 µm Fiber Optic Patch Cable | ThorLabs | FC/PC BFL37-800 | |
Power Meter | ThorLabs | PM100D (Power Meter), S121C (Standard Power Sensor) | |
475 nm Cree XLamp XP-E | DigiKey | XPEBLU-L1-R250-00Y01DKR-ND | LED power and efficiency are continually increasing, so we recommend checking for the latest products (www.cree.com). |
Arduino UNO | DigiKey | 1050-1024-ND |