Proporcionamos un protocolo detallado para la inducción de la potenciación a largo plazo en la región CA1 del hipocampo y el posterior aislamiento de fracciones enriquecidas nucleares de la zona de tetanized de la rodaja. Este enfoque puede ser utilizado para determinar la actividad de importación nuclear dependiente de proteína en modelos celulares de aprendizaje y memoria.
El estudio de la actividad de la expresión de proteínas dependientes, translocación subcelular, o fosforilación es esencial para entender los mecanismos celulares subyacentes de la plasticidad sináptica. La potenciación a largo plazo (LTP) y depresión a largo plazo (LTD) inducida en cortes de hipocampo agudos son ampliamente aceptados como modelos celulares de aprendizaje y la memoria. Existen numerosos estudios que usan imágenes de células o de inmunohistoquímica enfoques en vivo para visualizar la actividad dinámica de las proteínas dependientes. Sin embargo, estos métodos se basan en la idoneidad de los anticuerpos para inmunocitoquímica o sobreexpresión de proteínas de fluorescencia de etiquetado en las neuronas individuales. La inmunotransferencia de proteínas es un método alternativo que proporciona una confirmación independiente de los resultados. El primer factor limitante en la preparación de fracciones subcelulares de cortes de hipocampo tetanized individuales es la baja cantidad de material. En segundo lugar, el procedimiento de manejo es crucial porque las manipulaciones incluso muy cortos y menores de living rebanadas podría inducir la activación de ciertas cascadas de señalización. Aquí se describe un flujo de trabajo optimizado con el fin de obtener una cantidad suficiente de la fracción nuclear enriquecido de suficiente pureza a partir de la región CA1 de cortes de hipocampo agudos de cerebro de rata. Como ejemplo representativo se muestra que la ERK1 / 2 forma fosforilada de la proteína nuclear mensajero synapto-Jacob activamente transloca al núcleo después de la inducción de la LTP y se puede detectar en una fracción enriquecida nuclear de las neuronas CA1.
Sináptica N-metil-D-aspartato-receptores (NMDAR) juegan un papel crucial en la plasticidad sináptica y la supervivencia celular de señalización mientras que la activación de los NMDAR extrasinápticos puede desencadenar la neurodegeneración y la muerte celular. Estos cambios dependen de / actividad regulada la expresión génica dependiente fuertemente controlada y por lo tanto requieren una comunicación constante entre las sinapsis o dendritas activados y el núcleo 7. El MAP quinasas ERK1 / 2 son los efectores de NMDAR sinápticos de señalización y están involucrados en la expresión génica inducida por NMDAR activación, mientras que la señalización a través de NMDAR extrasynaptic no tiene o tiene un efecto inhibitorio sobre la ERK1 / 2 Actividad 8,11.
Hay una serie de proteínas que han demostrado lanzadera entre dendritas distales y el núcleo. Muchas de estas proteínas contienen una señal de localización nuclear y son transportados activamente a lo largo de los microtúbulos en un dineína y forma importina dependiente al núcleo 6,9. Interestingly, algunos de estos mensajeros sólo de tránsito al núcleo en respuesta a estímulos sinápticos específicos. Por ejemplo, el transporte retrógrado de AMP cíclico elemento de respuesta a la proteína de unión 2 (CREB2) es inducida por LTD química pero no LTP 12. Localizada estimulación sináptica dependiente de NMDAR impulsa coactivador transcripcional CREB reguladas (CRTC1) en el núcleo, un proceso de translocación, que está implicado en la plasticidad del hipocampo a largo plazo 4. Se ha demostrado recientemente que el mensajero de proteínas Jacob se transloca al núcleo después de tanto, la activación NMDAR sinápticos y extrasynaptic y regula la transcripción génica dependiente de CREB 5. El origen sináptica o extrasynaptic de la señal se codifica en una modificación postraduccional de Jacob. La actividad sináptica induce ERK1 / 2 fosforilación dependiente de Jacob en una serina en la posición 180 fundamental (pJacobS 180), que es un requisito para la posterior translocación al núcleo del hipocampo en cultivo primario. Por otra parte, in neuronas CA1 del hipocampo rebanadas agudas pJacobS 180 transloca al núcleo después de Schaffer garantía LTP pero no LTD 1,10. PS180 Jacob lleva a un aumento de la expresión de genes relacionados con la plasticidad y la expresión de los genes se alimenta de nuevo a la función sináptica. En agudo contraste, Jacob que se transloca al núcleo después de la activación NMDAR extrasinápticos no está fosforilada en Ser180 y podría estar asociado con diferente complejo de proteínas en el núcleo causando 'CREB apagado' y una retracción de los contactos sinápticos 10.
Mayoría de los estudios publicados sobre la importación nuclear de synapto-nuclear proteína mensajera se han realizado en cultivos primarios neuronales disociadas. Por lo tanto, sería interesante ver si estos hallazgos pueden ser reproducidos en fisiológicamente más relevante condiciones utilizando rebanadas de hipocampo donde la conectividad neuronal y la función son mucho mejor conservado. Aquí presentamos un protocolo optimizado para la evaluación de LTP-deColgante translocación nuclear de los mensajeros de proteínas por inmunotransferencia. Este método también es adecuado para el análisis de la actividad de fosforilación dependiente de proteínas en una fracción nuclear crudo. En concreto, el actual protocolo implica la preparación de rodajas de hipocampo CA1 agudas, la inducción y la grabación de la LTP. A continuación, la región CA1 se diseccionó microscópicamente para aislar la región estimulada. Hemos combinado y modificado el protocolo para el aislamiento nuclear proporcionada por CellLytic NuCLEAR Extraction Kit con los cambios introducidos por Zhao y sus colegas 17. El procedimiento optimizado incluye la lisis de las regiones CA1 disecados en tampón hipotónico que permite hinchazón celular y liberación de núcleos. La lisis celular y la morfología de los núcleos pueden ser determinadas por examen microscópico. De enriquecimiento nuclear se logra mediante una etapa de centrifugación corta. Análisis de inmunotransferencia con anticuerpos contra NeuN y NSE2, marcadores específicos de fracciones citosólicas o nucleares, indica que este enfoque puede ser utilizado como un rápidoy el protocolo reproducible para aislar estas fracciones subcelulares y estudiar las modificaciones posteriores a la traducción muy lábiles como la fosforilación de proteínas. Además, este método es ventajoso para las pequeñas muestras de tejido que se derivan de regiones CA1 de cortes de hipocampo disecados y se puede utilizar en combinación para inmunohistoquímica de cortes de hipocampo.
Los pasos descritos en el protocolo anterior proporcionan una guía de cómo preparar aguda hipocampo rodajas de ratas jóvenes o adultos, inducir y registro LTP, diseccionar rápidamente área estimulada de la rebanada, y preparar fracción enriquecida nuclear para el estudio de la actividad dinámica de las proteínas dependientes. Este enfoque se deriva de la combinación de varios métodos diferentes usados independientemente uno de otro. Hemos optimizado el flujo de trabajo y proporcionar suficientes detalles…
The authors have nothing to disclose.
This work was funded by the DFG (SFB 779 TPB8, Kr1879/3-1 MRK), DIP grant (MRK), EU FP7 MC-ITN NPlast (MRK), Center for Behavioral Brain Sciences (CBBS, Sahsen-Anhalt), (AK and SB), MM is a recipient of European Molecular Biology Organization (EMBO) Long-Term Fellowship (EMBO ALTF 884-2011) and Marie-Curie IEF.
Table 1. Equipment | |||
CED 1401 AD/DA converter | Cambridge Electronics Design, UK | ||
Axopatch 200B amplifier | Axon,USA | ||
Axon Digidata acquisition system | Axon,USA | ||
Clampex 10.0 Data acquisition and analysis software | Axon,USA | ||
Leica microscope | Leica TCS SP2,Germany | ||
P-97 Standard microelectrode puller | Sutter,USA | ||
Stereomicroscope | Leica | Leica S4E, Germany | |
Vibrotome | Leica VT1000S, Germany | ||
Isolated pulse stimulator | Model2100, A-M systmes, USA | ||
Centrifuge | Thermo Scientific, HERAEUS, FRSCO17 | ||
SDS-PAGE system | BIORAD | ||
Cooler | JULABO | ||
Bright field Microscope | NIKON ECLIPSE TS100 | ||
Cell culture incubator | Thermo Electron Corporation, HERAEUS | ||
Micromanipulator | Luigs & Neumann, SM-5, Germany | ||
Blotting chamber and electric power supplier | Hoefer Scientific Instruments, San Francisco | ||
Cooler | Julabo, F12 | ||
Centrifuge | Thermo Scientific, Heraeus, FRESCO 17 | ||
Submerged type Recording Chamber | custom made | ||
U-shape and submerged type incubator | custom made | ||
Small surgical scissors | |||
Scalpel | |||
Thin spatula | |||
Plastic Pasteur pipette | |||
Plastic culture dish | |||
Bunsen beaker | |||
Syringe | |||
Table 2. Reagents | |||
Name of Reagent | Company | Catalog Number | Comments/Description |
NaCl | ROTH | Art.-Nr.3957.1 | ≥99.5%, p.a.,ACS,ISO |
KCl | ROTH | Art.-Nr.6781.1 | ≥99.5%, p.a.,ACS,ISO |
CaCl2·2H2O | MERCK | 1.02382.0500 | pro analysi |
MgSO4·2H2O | MERCK | 5886.05 | pro analysi |
MgCl2·6H2O | AppliChem | CAS-NO: 7791-18-6; EC-NO:2320946 | for Molecularbiology |
KH2PO4 | MERCK | 12034.025 | for Molecularbiology |
Na2HPO4·2H2O | MERCK | 1.06574.1000 | extra pure |
Glucose·H2O | ROTH | Art.-Nr.6887.1 | for Molecularbiology |
Hepes | ROTH | Art.-Nr.9105.4 | PUFFERAN, ≥99.5%, p.a. |
NaHCO3 | MERCK | 1.06329.1000 | pro analysi |
Protease inhibitor Coctail | ROCHE | ||
Phosphostop | ROCHE | ||
Bicuculline | Tocris bioscience | ||
Isofluran | Baxter | ||
Table 4. Antibodies | |||
Primary antibodies | Company | Catalog Number | Species |
pJac-s180 | Biogenes/ purified | rabbit (dil. 1:100) | |
NeuN | Milipore | MAB377 | mouse (dil. 1:1,000) |
NSE | Cell Signaling | D20H2 | rabbit (dil. 1:1,000) |
beta-actin | Sigma | A-5441 | mouse (dil. 1:5,000) |
Secondary antibodies | Species | ||
IgG HRP Conjugated | DAKO | goat anti – mouse (1:5,000) | |
IgG HRP Conjugated | NEB | goat anti – rabbit (1:5,000) |