Descriviamo i metodi per la progettazione, la fabbricazione e la caratterizzazione sperimentale di emettitori fotoconduttrici plasmonica, che offrono due ordini di grandezza più elevati livelli di potenza terahertz rispetto agli emettitori fotoconduttori convenzionali.
In questo articolo video presentiamo una dimostrazione dettagliata di un metodo molto efficiente per la generazione di onde terahertz. La nostra tecnica si basa su fotoconduzione, che è stato una delle tecniche più utilizzate per la generazione di terahertz 1-8. Generazione Terahertz in un emettitore fotoconduttiva si ottiene pompando un fotoconduttore ultraveloce con una illuminazione laser pulsato o heterodyned. La fotocorrente indotta, che segue l'inviluppo del laser di pompa, viene instradato a un antenna irradiante terahertz collegata agli elettrodi di contatto fotoconduttore per generare radiazione terahertz. Anche se l'efficienza quantica di un emettitore fotoconduttore può raggiungere teoricamente il 100%, i trasporti relativamente lunghi lunghezze dei percorsi dei vettori foto generati per gli elettrodi di contatto di fotoconduttori convenzionali hanno gravemente limitato la loro efficienza quantica. Inoltre, l'effetto di schermatura vettore e ripartizione termica limitano rigorosamente la massima uscita potenza di fonti terahertz fotoconduttori convenzionali. Per affrontare i limiti di efficienza quantica di convenzionali emettitori terahertz fotoconduttori, abbiamo sviluppato un nuovo concetto di emettitore fotoconduttiva che incorpora una configurazione plasmonico elettrodo di contatto per offrire alta quantum-efficienza e il funzionamento ultraveloce contemporaneamente. Utilizzando nano-scala elettrodi di contatto plasmonic, riduciamo notevolmente il vettore foto-generated percorso medio di trasporto per fotoconduttori elettrodi di contatto rispetto a fotoconduttori convenzionali 9. Il nostro metodo permette anche di aumentare l'area attiva fotoconduttore senza un notevole incremento del carico capacitivo all'antenna, aumentando la potenza massima radiazione terahertz impedendo l'effetto di schermatura vettore e ripartizione termica alle alte potenze ottico di pompa. Incorporando elettrodi di contatto plasmonic, dimostriamo migliorando l'ottico-terahertz efficienza di conversione di potenza di un convenzionale fotoconduttivo terahertz emettitore di un fattore 50 10.
Presentiamo un romanzo emettitore terahertz fotoconduttivo che utilizza una configurazione di elettrodo di contatto plasmonica di migliorare l'efficienza di conversione ottico-terahertz da due ordini di grandezza. La nostra tecnica si rivolge ai più importanti limitazioni convenzionali emettitori terahertz fotoconduttori, vale a dire a bassa potenza di uscita e la scarsa efficienza di potenza, che provengono dal compromesso intrinseco tra elevata efficienza quantica e il funzionamento ultraveloce di fotoconduttori convenzionali.
Una delle novità chiave nella nostra progettazione che hanno portato a questo miglioramento delle prestazioni cavallina è quello di progettare una configurazione di elettrodo di contatto che accumula un gran numero di vettori foto-generati in prossimità degli elettrodi di contatto, tali da poter essere raccolti all'interno di un sub- picosecondo scala cronologica. In altre parole, il compromesso tra funzionamento ultraveloce fotoconduttore ed alta efficienza quantica è mitigato dalla manipolazione spaziale del foto-generivettori TED. Elettrodi di contatto plasmoniche offrono questa capacità unica di (1) consentendo confinamento luce in dispositivi nanometrici aree attive tra gli elettrodi plasmonic (oltre il limite di diffrazione), (2) straordinario valorizzazione luce al contatto metallo e foto-assorbenti interfaccia semiconduttore 10, 11. Un altro attributo importante della nostra soluzione è che alloggia ampie aree attive fotoconduttore senza un notevole aumento del carico parassitario all'antenna radiante terahertz. Utilizzando grandi aree attive fotoconduttore consentono mitigare l'effetto di schermatura vettore e ripartizione termica, che sono i limiti ottimali per la massima potenza di radiazione da emettitori fotoconduttori convenzionali. In questo articolo il video si concentra sulle caratteristiche uniche della nostra soluzione presentata da descrivere la fisica che disciplinano, modellazione numerica e verifica sperimentale. Noi sperimentalmente Dimostriamo 50 volte superiori poteri terahertz da un phot plasmonicaemettitore oconductive in confronto con un emettitore fotoconduttiva simile con elettrodi di contatto non plasmonic.
In questo articolo video, presentiamo una tecnica di generazione terahertz fotoconduttivo romanzo che utilizza una configurazione di elettrodo di contatto plasmonica di migliorare l'efficienza di conversione ottico-terahertz da due ordini di grandezza. Il significativo aumento della potenza di radiazione terahertz dagli emettitori fotoconduttrici plasmonic presentati è molto utile per il futuro ad alta sensibilità terahertz imaging, la spettroscopia e spettrometria di sistemi utilizzati per l'identificazione c…
The authors have nothing to disclose.
Gli autori desiderano ringraziare Picometrix per fornire il substrato LT-GaAs e con gratitudine riconoscere il sostegno finanziario da Michigan Spazio di Grant Consortium, DARPA Giovane Faculty Award gestito dal Dott. John Albrecht (contratto # N66001-10-1-4027), NSF CARRIERA Premio gestito dal Dott. Samir El-Ghazaly (contratto # N00014-11-1-0096), ONR Young Investigator Award gestito dal Dott. Paul Maki (contratto # N00014-12-1-0947), e ARO Young Investigator Award gestito da Il dottor Dev Palmer (contratto # W911NF-12-1-0253).
Reagent | |||
Polymethyl Methacrylate (PMMA) | MicroChem | 950K PMMA A4 | |
Hexamethyldisilazane (HMDS) | Shin-Etsu MicroSI | MicroPrime HP Primer | |
Optical Photoresist | Dow Chemical | Megaposit SPR 220-3.0 | |
Photoresist Developer | AZ Electronic Materials | AZ 300 MIF Developer | |
Methyl Iso-Butyl Keytone (MIBK) | Avantor Performance Materials | 9322-03 | |
Equipment | |||
Ti:Sapphire Mode-Locked Laser | Coherent | MIRA 900D V10 XW OPT 110V | |
Pyroelectric Detector | Spectrum Detector | SPI-A-65 THz | |
Electron-Beam Lithography Tool | JEOL | JBX-6300-FS | |
Plasma Stripper | Yield Engineering Systems | YES-CV200RFS | |
Metal Evaporator | Denton Vacuum | SJ-20 | |
Plasma Enhanced Chemical Vapor Deposition Tool | GSI | GSI PECVD System | |
Projection Lithography Stepper | GCA | AutoStep 200 | |
Reactive Ion Etcher | LAM Research | 9400 | |
Parameter Analyzer | Hewlett Packard | 4155A | |
Optical Chopper | Thorlabs | MC2000 | |
Lock-in Amplifier | Stanford Research Systems | SR830 | |
Electrooptic Modulator | Thorlabs | EO-AM-NR-C2 | |
Motorized Linear Stage | Thorlabs | NRT100 |