We beschrijven de experimentele methode nanogestructureerde oxide dunne films te deponeren door nanoseconde gepulste laser depositie (PLD) in aanwezigheid van een achtergrondgas. Door deze methode Al gedoteerde ZnO (AZO) films, van compacte hiërarchisch gestructureerd als nano-boom bossen, worden gestort.
Nanoseconde Pulsed Laser Deposition (PLD) in aanwezigheid van een achtergrondgas kan de depositie van metaaloxiden met afstelbare morfologie, structuur, dichtheid en stoichiometrie door een juiste controle van de plasma pluim expansie dynamiek. Dergelijke veelzijdigheid kan worden benut om nanogestructureerde films te produceren van compacte en dichte tot nanoporeuze gekenmerkt door een hiërarchische assemblage van nano-sized clusters. In het bijzonder beschrijven we de gedetailleerde methode om twee soorten Al-gedoteerde ZnO (AZO) films fabriceren als transparante elektroden in zonnecellen: 1) bij lage druk O 2, compact films met elektrische geleidbaarheid en optische transparantie dicht bij de stand van de techniek transparante geleidende oxides (TCO) is gedeponeerd bij kamertemperatuur, verenigbaar met thermisch gevoelige materialen zoals polymeren in organische fotovoltaïsche cellen (OPVs) 2) Bijzonder lichtverstrooiing hiërarchische structuur lijkt op een bos van bomen nano-prodhanteerden bij hogere drukken. Dergelijke structuren vertonen een hoge Haze factor (> 80%) en kan worden benut om de licht vangen vermogen te verbeteren. De hier beschreven werkwijze AZO films kunnen worden toegepast op andere metaaloxiden relevant voor technologische toepassingen zoals TiO 2, Al 2 O 3, WO 3 en Ag 4 O 4.
Pulsed Laser Deposition (PLD) stelt laserablatie van een vast doel dat resulteert in de vorming van een plasma van ablatie soorten die worden afgezet op een substraat om een film (zie figuur 1) 1 groeien. Interactie met een achtergrond atmosfeer (inert of reactief) kan worden gebruikt om homogene nucleatie cluster induceren in de gasfase (zie figuur 2) 2,3. Onze strategie voor materiaal synthese door PLD is gebaseerd op de stemming van materiaaleigenschappen in een bottom-up benadering door een zorgvuldige controle van de plasma-dynamiek gegenereerd in de PLD proces. Clustergrootte, kinetische energie en samenstelling kunnen worden gevarieerd door een juiste instelling van depositie parameters die film groei en resulteren in morfologische en structurele veranderingen 4,5 beïnvloeden. Door gebruik van de hier beschreven methode we aangetoond voor een aantal oxiden (bijvoorbeeld WO 3, 4 O 4 Ag, Al 2 O 3 and TiO 2), de mogelijkheid om morfologie afstemmen, dichtheid, porositeit, mate van structurele orde stoichiometrie en fase doordat de materiaalstructuur op nanoschaal 6-11. Dit maakt het ontwerp van materialen voor specifieke toepassingen 12-16. Onder verwijzing naar fotovoltaïsche toepassingen, hebben we gesynthetiseerd nanogestructureerde TiO 2 hiërarchisch georganiseerd door het aaneenzetten van nanodeeltjes (<10 nm) in een nano-en mesostructuur die lijkt op een 'woud van bomen' 13 tonen interessante resultaten bij toepassing als photoanodes in kleurstof zonnecellen (DSSC ) 17. Op basis van deze eerdere resultaten beschrijven we het protocol voor de afzetting van Al-gedoteerde ZnO (AZO) films als een transparante geleidende oxide.
Transparante geleidende oxides (TCO) hoog bandgap (> 3 eV) materiaal omgezet in geleiders door zware dotering, getoond weerstand <10 -3 ohm-cm en meer dan 80% optische Transmittance in het zichtbare gebied. Ze zijn van essentieel belang voor vele toepassingen zoals aanraakschermen en zonnecellen 18-21 en worden doorgaans gekweekt door verschillende technieken zoals sputteren, gepulste laser depositie, chemische dampafzetting, spuitpyrolyse en op oplossingen gebaseerde chemische methoden. Onder TCO is indium-tin-oxide (ITO) is uitgebreid bestudeerd voor een lage resistiviteit maar het nadeel van de hoge kosten en lage beschikbaarheid van indium. Onderzoek is nu op weg naar indium-vrije systemen, zoals F-gedoteerde SnO 2 (FTO), Al-gedoteerde ZnO (AZO) en F-gedoteerde ZnO (FZO).
Elektroden, geschikt om een intelligent beheer van het invallende licht (licht vangen) zijn bijzonder interessant voor fotovoltaïsche toepassingen. De mogelijkheid in te verstrooien zichtbaar licht via structuren en morfologie gemoduleerd op een schaal vergelijkbaar met de golflengte van licht (bijv. 300-1,000 nm), een goede controle over defilm morfologie en op cluster montage architecturen nodig is.
In het bijzonder beschrijven we hoe u de morfologie en structuur van AZO films af te stemmen. Compact AZO gedeponeerd bij lage druk (2 Pa zuurstof) en bij kamertemperatuur wordt gekenmerkt door lage weerstand (4,5 x 10 -4 ohm cm) en zichtbaar licht transparant (> 90%) die kan concurreren met AZO gedeponeerd bij hoge temperaturen, terwijl AZO hiërarchische structuren verkregen door ablatie op O 2 drukken boven 100 Pa Dergelijke structuren vertonen een sterke lichtverstrooiing vermogen met troebelingsfactor tot 80% en 22,23.
De plasma pluim vorm is nauw verwant aan de ablatie, met name bij aanwezigheid van een gas, controle van de plasma pluim visuele inspectie is belangrijk om de afzetting te beheersen. Bij afzetten van een metaaloxide door ablatie een oxide doelwit is zuurstof nodig om zuurstof verliezen steunen tijdens het ablatieproces. Bij lagere zuurstof achtergrond gasdruk kan het gedeponeerde materiaal hebben zuurstof vacatures. Dit effect wordt verminderd door de gasdruk. Om stoichiometrie scheiden van gasmengsels morfologie (b…
The authors have nothing to disclose.
Name of Reagent/Material | Company | Catalog Number |
Pulsed Laser | Continuum-Quantronix | Powerlite 8010 |
Power meter | Coherent | FieldMaxII-TO |
Ion Gun | Mantis Dep | RFMax60 |
Mass flow controller | Mks | 2179 ° |
Quartz Crystal Microbalance | Infcon | XTC/2 |
Background gas | Rivoira-Praxair | 5.0 oxygen |
Target | Kurt Lesker | (made on request) |
Isopropanol | Sigma Aldrich | 190764-2L |
Source meter | Keithley | K2400 |
Magnet Kit | Ecopia | 0.55T-Kit |
Spectrophotometer | PerkinElmer | Lambda 1050 |