Optogenetic методы сделали возможным изучение вклада отдельных нейронов в поведении. Мы описываем метод в личиночной рыбок данио для активации одного соматосенсорной нейронов, экспрессирующих channelrhodopsin вариант (шеф-повар) с диодной накачкой твердом состоянии (DPSS) лазерные и записи вызвала поведения с высокоскоростной видео-камеры.
Личинки данио появляются как модель для описания развития и функционирования простых нейронных цепей. Благодаря своим внешним оплодотворением, быстрое развитие, и полупрозрачность, рыбок данио особенно хорошо подходит для подхода optogenetic для расследования нейронные функции цепи. При таком подходе светочувствительных ионных каналов выражается в конкретных нейронов, что позволяет экспериментатору, чтобы активировать или подавлять их волю и таким образом оценить их вклад в конкретное поведение. Применение этих методов в личиночной рыбок данио концептуально проста, но требует оптимизации технических деталей. Здесь мы показываем, процедуры для выражения вариант channelrhodopsin в личиночной рыбок данио нейронов соматосенсорной, фото-активирующие отдельные клетки, и записи в результате поведения. Вводя некоторые изменения в ранее установленные методы, этот подход может быть использован для выявления поведенческих реакций от отдельных нейронов активирован допо крайней мере 4 дня после оплодотворения (DPF). В частности, мы создали трансгенных использованием нейронных соматосенсорной усилитель, CREST3, чтобы управлять выражением отмеченных channelrhodopsin вариант, шеф-tdTomato. Потребители инъекционных этого трансгена в 1-клеточной стадии эмбриона приводит к мозаике выражение в соматосенсорной нейронов, которые могут быть выявлены с конфокальной микроскопии. Освещающая определены клеток в этих животных с света от 473 нм лазер DPSS, направляется через волоконно-оптический кабель, вызывает поведение, которое может быть записано с помощью высокоскоростных видеокамер и количественный анализ. Эта техника может быть адаптирована к исследованию поведения, вызванного активацией нейронов любых рыбок данио. Отсюда и подход с генетическим или фармакологических возмущений будет мощный способ исследовать формирование схемы и функции.
Развитие optogenetic методы поощрения или подавления возбудимости нейронов с определенными длинами волн света дало возможность изучить функции различных популяций нейронов в нейронных цепях управления поведением 1, 19, 21. Этот метод часто используется для активации группы нейронов, но он также может быть использован для активации отдельных нейронов. Данио рерио Личинки особенно актуален в этих методах, так как они являются прозрачными, их нервная система развивается быстро, и создание трансгенных животных очень быстро и рутины. Тем не менее, значительные технические препятствия необходимо преодолеть, чтобы надежно достижения одной активации нейрона.
Для оптимизации процедуры optogenetic активации отдельных нейронов у рыбок данио, мы сосредоточились на соматосенсорной нейронов. Личинки данио рерио обнаружить различные соматосенсорной раздражители с помощью двух популяций нейронов: нейроны тройничного нерва, которые иннервируют голову, и Rohon-Борода (RB) нейроны, которые иннервируют остальные части тела. Каждый тройничного и RB нейронов проекты периферических аксонов, что ветви широко в кожу для обнаружения стимулов и центрального аксона, который подключается к вниз по течению нейронных цепей. Животные реагировать на прикосновение уже 21 часов после оплодотворения (HPF), указывая, что когерентное соматосенсорной схемы сформировали 5, 18. Во время развития личинок по крайней мере некоторые тройничного и RB нейроны синапсов на ячейку Mauthner для активации классического ответы побега, но накапливаются данные свидетельствуют о том, что существует несколько классов нейронов соматосенсорной с различными формами соединения, которые могут вызвать изменения на побег поведения 2, 4, 10, 12, 14, 15, 16, 17. Наша мотивация для развития этого метода было охарактеризовать поведенческие функции различных классов нейронов соматосенсорной, но такой подход в принципе может быть использован для изучения функций практически любой нейрон или популяции нейронов в ЛарВал рыбок данио.
Дуглас и соавт. Ранее описанного метода для активации Channelrhodopsin-2-выражения нейронов соматосенсорной с голубым светом, вызывая выход поведения 3. Их подход, используемый элемент усилителя от Isl1 генов для управления экспрессией ChR2-EYFP в соматосенсорной нейронов. Это трансгенов, однако, как сообщается, отображение относительно слабой флуоресценцией, требующих совместного введения второго докладчика, UAS :: GFP, чтобы обеспечить визуализацию клеток, экспрессирующих ChR2-EYFP. Этот подход был использован, чтобы вызвать поведение ответов между 24-48 HPF, но никогда не могли вызвать отклик последние 72 HPF. Таким образом, хотя этот метод работает для изучения нервной системы на ранних личиночных стадиях (24-48 HPF), оно является недостаточным для характеристики нейронных цепей и поведенческие реакции у пожилых личинки, когда более разнообразными поведенческими реакциями являются очевидными и нейронные цепи являются более зрелыми.
Мы стремилисьповысить чувствительность этого метода для того, чтобы охарактеризовать функции субпопуляций личинок нейронов РБ. Для улучшения выражения мы использовали соматосенсорной конкретного усилителя (CREST3) 20 для управления экспрессией LexA-VP16 и участок LexA оператор последовательности (4xLexAop) 11 для усиления экспрессии флуоресцентно отмеченных свет активированного канала. Эта конфигурация усиливается экспрессия каналов, устраняя необходимость для совместного выражения второго репортера и позволяющие непосредственно определить относительное содержание канала в каждый нейрон. Использование LexA / LexAop последовательность была дополнительным преимуществом, что позволяет нам ввести трансгенных данио рерио в линии репортеру, что использовать Gal4/UAS системы. Переходный выражение этого трансгена в результате различных уровней выражение, но, как правило, достаточно прочной, чтобы визуализировать как тело клетки и аксональной проекции отдельных нейронов в течение нескольких дней. Для оптимизации чувствительностиность на свет мы использовали свет активированного канала шеф-повара, вариант channelrhodopsin, состоящий из химеры channelopsin-1 (Chop1) и channelopsin-2 (Chop2) с кроссовером сайте спирали цикл EF 13. Этот канал активируется при той же длине волны, как ChR2, но требует низкой интенсивности света для активации, что делает его более чувствительным, чем другие широко используемые каналы, в том числе ChR2. Белка повар был слит с красным флуоресцентным белком, tdTomato, позволяя нам для выявления экспрессии белка без активации канала. В качестве источника света, мы использовали диодной накачкой твердотельным (DPSS) лазерный связан с волоконно-оптическим кабелем для доставки точным, мощным импульсом синего света на конкретный регион личинок. Это позволило нам сосредоточиться лазерного излучения на отдельных нейронов, устраняя необходимость в поиске редких трансгенных животных, выразив канал в одном нейроне. Используя этот подход, мы смогли активировать отдельных нейронов РБ, записывать поведенческая реакцияс, высокоскоростные видеокамеры, изображения и активированные нейроны в высоком разрешении с конфокальной микроскопии.
Мы описали подход к optogenetic активации отдельных нейронов РБ в живых рыбок данио. Наш метод использует переходный трансгенез, чтобы выразить флуоресцентно отмеченных channelrhodopsin вариант, шеф-tdTomato 13, в определенных нейронах соматосенсорной. Такой подход может быть легко адаптирована ?…
The authors have nothing to disclose.
Мы благодарим Фуми Кубо, Tod Тиле и HerwigBaier (UCSF / Max Planck Institute) за советы по поведению экспериментов и DPSS лазерных созданы; Heesoo Ким и Кьяра Cerri от MBL курс нейробиологии за помощь в шеф-tdTomato экспериментов; PetronellaKettunen (университет Гетеборга ) для начальных сотрудничество по optogenetic экспериментов; BaljitKhakh, Эрик Хадсон, Майк Бака и Джон Миллиган (UCLA) за технической консультацией, и Роджер Цзянь (UCSD) для шеф-tdTomato построить. Эта работа была поддержана АЯРБ (5F31NS064817) награду AMSP и гранта NSF (RIG: 0819010) на AS.
Name of Reagent/Material | Company | Catalog Number | Comments |
Materials | |||
Glass Pasteur pipette | Fisher | 1367820B | or equivalent (10-15 mm diameter) |
200 μm optic fiber | ThorLabs | AFS200/220Y-CUSTOM | Patch Cord, Length: 3 m, End A: FC/PC, End B: FC/PC, Jacket: FT030 |
50 μm optic fiber | ThorLabs | AFS50/125Y-CUSTOM | Patch Cord, Length: 3 m, End A: FC/PC, End B: FC/PC, Jacket: FT030 |
Adjustable Stripping Tool | ThorLabs | AFS900 | or Three-Hole Stripping Tool (FTS4) |
Diamond Wedge scribe | ThorLabs | S90W | |
Flaming/Brown Micropipette Puller | Sutter Instruments | P-97 | or equivalent |
Borosilicate glass tubing with filament | Sutter Instruments | BF-100-78-10 | |
Injection mold | n/a | n/a | Figure 5 |
1.5 ml centrifuge tubes | Any | Any | |
Petri dish (100×15 mm) | Any | Any | |
Petri dish (60×15 mm) | Any | Any | |
Pressure injector | ASI | MPPI-3 | or equivalent |
Micromanipulator and metal stand | Narashige | M152 | or equivalent |
Disposable plastic pipettes | Fisherbrand | 13-711-7 | or equivalent |
Poker (Pin holder and Insect pin) | Fine Science Tools, Inc. | 26018-17 and 26000-70 | or equivalent |
Forceps | Fine Science Tools, Inc. | 11255-20 | or equivalent |
Microloader pipette tips | Eppendorf | 9300001007 | |
28.5 °C incubator | any | any | |
42 °C heat block | Any | Any | |
Non-Sterile scalpel blades #11 | Fine Scientific Tools, Inc. | 10011-00 | or equivalent |
Dissecting scope | Zeiss | Stemi | or equivalent |
Fluorescent dissecting scope with standard filter | Any | any | or equivalent |
Confocal microscope | Zeiss | LSM 510 or 710 | or equivalent with lasers for GFP and RFP, and 10x, 20x and 40x objectives |
High speed camera | AOS Technologies, Inc. | X-PRI (130025-10) | or equivalent |
473 nm portable laser | Crystal lasers | CL-473-050 | or higher power, with TTL option |
S48 Stimulator | Astro-Med, Inc. Grass Instrument division | S48K | or equivalent |
FC/PC to FC/PC mating sleeve | ThorLabs | ADAFC1 | May need for optic cable connection |
Laser Safety Glasses | ThorLabs | LG10 | or equivalent |
24 culture plates | Genesee | 25-102 | or equivalent |
Single depression slides | Fisher | S175201 | Or equivalent |
Reagent | |||
Instant ocean | Aquatic Ecosystems | IS50 | |
Methylene blue | Fisher | S71325 | |
Phenol red | Sigma | P4758 | |
Agarose | EMD | 2125 | or equivalent |
Low Melt agarose | Sigma | A9045 | or equivalent |
PTU | Sigma | P7629 | |
Tricaine | Sigma | A5040 | |
blue/embryo water | 10 L ddH2O 0.6 g Instant Ocean 6 drops methylene blue |
||
phenol red | (5 mg/ml in 0.2 M KCl) | ||
100x PTU | 0.150 g PTU 50 ml ddH2O dissolve at 70 °C, shake often aliquot and store at -20 °C |
||
1x PTU | 1 ml 100x PTU 99 ml blue/fish water |
||
Tricaine stock solution | 400 mg tricaine 97.9 ddH2O |
||
~2.1 ml 1M Tris, pH9.0 | adjust pH to ~7.0 store in 4 °C or -20 °C for long term storage |