Summary

模拟,太赫兹超材料吸收器的制备与表征

Published: December 27, 2012
doi:

Summary

该协议概述了模拟,太赫兹超材料吸收器的制备和表征。这样的吸收剂,再加上适当的传感器时,在太赫兹成像和光谱学的应用程序。

Abstract

超材料(MM),设计的特性,可能无法在自然界中发现的人工材料,已广泛地探讨,因为其独特的性能第一的理论和实验示范2。庄家可以提供一个高度可控的电磁响应,迄今已体现在每一个技术相关的光谱范围包括光学 ,近红外,中红外,太赫兹6,毫米波,微波8和电台9个波段。应用范围包括完美的镜头,传感器11,电信12,隐形斗篷13和过滤器14,15。最近,我们已开发的单一条带16,双频段17和宽带18太赫兹超材料的吸收体的设备,能够在共振峰的吸收率大于80%。一个MM吸收的概念,是特别是包含Ÿ在太赫兹频率,它是很难找到强大的频率选择性的太赫兹吸收剂19。在我们的MM吸收剂的THz辐射被吸收在〜λ/20的厚度,克服传统的四分之一波长的吸收剂的厚度限制。 MM吸收剂自然本身太赫兹检测应用,如热传感器,如果集成了合适的太赫兹源,( 例如量子级联激光器),可能会导致结构紧凑,高度敏感,成本低,实时太赫兹成像系统。

Introduction

该协议描述了模拟,单波段和宽带太赫兹MM的吸收剂的制备与表征。的装置, 如图1中所示,由一个金属十字和一个介电层上的金属接地平面的顶部。十字形的结构的一个例子的电动环形谐振器(ERR)20,21和耦合强烈均匀电场,但可以忽略不计磁场。通过配对的ERR有一个接地平面,入射THz波的磁性组分的诱导电流的部分中的ERR是平行的方向的电场E。然后,电场和磁场的响应可以被调谐独立和自由空间匹配的阻抗的结构,通过改变ERR和两个金属元素之间的距离的几何形状。正如图1(d)中所示的结构的对称性的查询结果中的偏振不敏感吸收响应。

Protocol

<p class="jove_title"> 1。模拟一个单波段的太赫兹超材料吸收器</p><p class="jove_content"三维视图显示的模拟盘<strong图2</strong>。</p><ol><li> Lumerical软件FDTD用于优化传输,反射和吸收特性的太赫兹超材料吸收器。所有单位都以微米为单位。</li><li>定义的太赫兹聚酰亚胺材料的性能,通过点击来<em材料,添加(N,K)材料</em和输入作为n>

Representative Results

图5(a)示出了实验获得的和模拟的吸收光谱为MM吸收剂,具有3.1微米厚的聚酰亚胺电介质隔板。这MM结构具有重复周期为27μm和尺寸K = 26微米,L = 20微米,M = 10微米和N = 5微米。还对样品进行实验测量没有ERR层确认吸收是一个后果的MM的结构,而不是在电介质。的7.5微米厚的聚酰亚胺样品与没有ERR结构5%感兴趣的整个频率范围内具有最大吸收,请参阅图5(a),从而证实?…

Discussion

该协议描述了模拟,太赫兹超材料吸收器的制备和表征。这是必要的这样的亚波长结构准确地模拟之前的任何努力致力于昂贵的制造过程。 Lumerical软件时域有限差分模拟提供不仅MM吸收光谱上的信息,而且还吸收的位置,必要的知识,以帮助放置的换能器,并获得最大的响应。此外,该优化算法在Lumerical软件可以被实现为一个预先定义的品质因数( 例如,频率位置,最大吸收,吸收最小,…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由工程和物理科学研究理事会授予数量EP/I017461/1的支持。我们也希望所扮演的詹姆斯·瓦特纳米加工中心的技术人员做出的贡献。

Materials

Name of Reagent/Material Company Catalogue Number Comments
Lumerical FDTD Lumerical
Silicon wafer IDB technologies Single sided polished
Plassys 450 MEB evaporator Plassys Bestek
VM651 Primer Dupont
PI2545 Dupont
Methyl Isobutyl Ketone Sigma-Aldrich
Isopropanol Sigma-Aldrich
Plasmaprep5 barrel Asher Gala Instrumente
VB6 UHR EWF electron beam writer Vistec
Tanner L-Edit Tanner Inc.
Layout Beamer GenISys Inc.
Polymethyl methacrylate (PMMA) Sigma-Aldrich 293261 Sigma-Aldrich
IFV 66v/s FTIR Bruker
Pike 30spec reflection unit Pike Technologies
Hg arc lamp Bruker
Au mirror Thor Labs PF05-03-M01
Leica INM20 Optical Microscope Leica microsystems
6 mm Mylar Beamsplitter Bruker

References

  1. Pendry, J. B., Holden, A. J., Robbins, D. J., Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory. 47, 2075-2084 (1999).
  2. Pendry, J. B., Holden, A. J., Robbins, D. J., Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Microw Theory. 47, 2075-2084 (1999).
  3. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184-4187 (2000).
  4. Dolling, G., Wegener, M., Linden, S. Realization of a three-functional-layer negative-index photonic metamaterial. Opt. Lett. 32, 551-553 (2007).
  5. Zhang, S., et al. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005).
  6. Linden, S., et al. Magnetic response of metamaterials at 100 terahertz. Science. 306, 1351-1353 (2004).
  7. Landy, N. I., et al. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B. 79, 125104-12 (2009).
  8. Gokkavas, M., et al. Experimental demonstration of a left-handed metamaterial operating at 100 GHz. Phys. Rev. B. 73, 193103 (2006).
  9. Smith, D. R., Kroll, N. Negative refractive index in left-handed materials. Phys. Rev. Lett. 85, 2933-2936 (2000).
  10. Wiltshire, M. C. K., et al. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. Science. 291, 849-851 (2001).
  11. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966-3969 (2000).
  12. Kabashin, A. V., et al. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 8, 867-871 (2009).
  13. Dolling, G., Enkrich, C., Wegener, M., Soukoulis, C. M., Linden, S. Low-loss negative-index metamaterial at telecommunication wavelengths. Opt. Lett. 31, 1800-1802 (2006).
  14. Schurig, D., et al. Metamaterial electromagnetic cloak at microwave frequencies. Science. 314, 977-980 (2006).
  15. Chen, H. T., et al. Experimental demonstration of frequency-agile terahertz metamaterials. Nat. Photonics. 2, 295-298 (2008).
  16. Ma, Y., Khalid, A., Saha, S. C., Grant, J. P., Cumming, D. R. S. THz band pass filter on plastic substrates and its application on biological sensing. IEEE Photonics Society Winter Topicals Meeting Series. , 50-51 (2010).
  17. Grant, J., et al. Polarization insensitive terahertz metamaterial absorber. Opt. Lett. 36, 1524-1526 (2011).
  18. Ma, Y., et al. A terahertz polarization insensitive dual band metamaterial absorber. Opt. Lett. 36, 945-947 (2011).
  19. Grant, J., Ma, Y., Saha, S., Khalid, A., Cumming, D. R. S. Polarization insensitive, broadband terahertz metamaterial absorber. Opt. Lett. 36, 3476-3478 (2011).
  20. Tonouchi, M. Cutting-edge terahertz technology. Nat. Photon. 1, 97-105 (2007).
  21. D. Schurig, J. J. M., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., Smith, D. R. Microwave Cloaking Realized. Science. 314, 889 (2006).
  22. Padilla, W. J., et al. Electrically resonant terahertz metamaterials: Theoretical and experimental investigations. Phys. Rev. B. 75, 041102 (2007).
  23. Smith, D. R., Vier, D. C., Koschny, T., Soukoulis, C. M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E. 71, (2005).
  24. Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., Padilla, W. J. Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).
  25. Hao, J. M., et al. High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96, 251104 (2010).
  26. Chen, H. T. Interference theory of metamaterial perfect absorbers. Opt. Express. 20, 7165-7172 (2012).
  27. Lee, A. W. M., Hu, Q. Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array. Optics Letters. 30, 2563-2565 (2005).
  28. Thermo Nicolet Corporation. . An Introduction to Fourier Transform Infared Spectroscopy. , (2001).

Play Video

Cite This Article
Grant, J. P., McCrindle, I. J., Cumming, D. R. Simulation, Fabrication and Characterization of THz Metamaterial Absorbers. J. Vis. Exp. (70), e50114, doi:10.3791/50114 (2012).

View Video