Summary

Генетические экрана изолировать Toxoplasma гондий Клетки-хозяина Мутанты Egress

Published: February 08, 2012
doi:

Summary

Вперед генетики мощный метод, чтобы разгадать молекулярном уровне, как<em> Toxoplasma</em> Выходов из клетки-хозяина. Протоколы предоставляются химически mutagenize паразитов, обогащают для мутантов с дефектами в индуцированной выхода и проверки фенотип клонировали мутантов.

Abstract

The widespread, obligate intracellular, protozoan parasite Toxoplasma gondii causes opportunistic disease in immuno-compromised patients and causes birth defects upon congenital infection. The lytic replication cycle is characterized by three stages: 1. active invasion of a nucleated host cell; 2. replication inside the host cell; 3. active egress from the host cell. The mechanism of egress is increasingly being appreciated as a unique, highly regulated process, which is still poorly understood at the molecular level. The signaling pathways underlying egress have been characterized through the use of pharmacological agents acting on different aspects of the pathways1-5. As such, several independent triggers of egress have been identified which all converge on the release of intracellular Ca2+, a signal that is also critical for host cell invasion6-8. This insight informed a candidate gene approach which led to the identification of plant like calcium dependent protein kinase (CDPK) involved in egress9. In addition, several recent breakthroughs in understanding egress have been made using (chemical) genetic approaches10-12. To combine the wealth of pharmacological information with the increasing genetic accessibility of Toxoplasma we recently established a screen permitting the enrichment for parasite mutants with a defect in host cell egress13. Although chemical mutagenesis using N-ethyl-N-nitrosourea (ENU) or ethyl methanesulfonate (EMS) has been used for decades in the study of Toxoplasma biology11,14,15, only recently has genetic mapping of mutations underlying the phenotypes become routine16-18. Furthermore, by generating temperature-sensitive mutants, essential processes can be dissected and the underlying genes directly identified. These mutants behave as wild-type under the permissive temperature (35 °C), but fail to proliferate at the restrictive temperature (40 °C) as a result of the mutation in question. Here we illustrate a new phenotypic screening method to isolate mutants with a temperature-sensitive egress phenotype13. The challenge for egress screens is to separate egressed from non-egressed parasites, which is complicated by fast re-invasion and general stickiness of the parasites to host cells. A previously established egress screen was based on a cumbersome series of biotinylation steps to separate intracellular from extracellular parasites11. This method also did not generate conditional mutants resulting in weak phenotypes. The method described here overcomes the strong attachment of egressing parasites by including a glycan competitor, dextran sulfate (DS), that prevents parasites from sticking to the host cell19. Moreover, extracellular parasites are specifically killed off by pyrrolidine dithiocarbamate (PDTC), which leaves intracellular parasites unharmed20. Therefore, with a new phenotypic screen to specifically isolate parasite mutants with defects in induced egress, the power of genetics can now be fully deployed to unravel the molecular mechanisms underlying host cell egress.

Protocol

Обзор Протоколы предоставляются сначала определить дозы мутагенов приводит к 70% гибели паразитов (протокол 1). Следующая процедура предусмотрена для обогащения индуцированных мутантов выход из мутагенизированный бассейн паразита (протокол 2, рисунок 2). Это сопровождает?…

Discussion

Описанный протокол обеспечивает эффективный способ изолировать Toxoplasma мутантов с выходным дефекта. Мы успешно изолировать мутантов по различным этапам пути выхода, некоторые из которых имеют двойное фенотип вторжения 13. Потенциальное воздействие на вторжение можно опр?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Эта работа была профинансирована американской Сердечной Ассоциации ученых гранта на развитие 0635480N и Национального института здоровья грант AI081220. BIC поддерживает тамплиеров Eye Foundation грант.

Materials

Name of the reagent Company Catalogue number Comments
ENU Sigma-Aldrich N3385 1 M Stock in DMSO, store at -20°C
EMS Sigma-Aldrich M0880 1 M Stock in DMSO, store at -20°C
Dextran Sulfate Sigma-Aldrich D4911  
PDTC Sigma-Aldrich P8765 100 mM Stock in PBS
Diff Quick EMD Chemicals 65044-93  
Filter holder Cole-Parmer 540100  
3 μm polycarbonate filter Whatman Schleicher & Schuell 110612  
Hemocytometer Hausser Scientific 1475  
CO2 incubators Various manufacturers   Humidified, 5% CO2, at 35, 37 and 40°C
Fluorescence microscope Various manufacturers   Ideally inverted, wide-field with 63x or 100x oil objective

HBSSc (according to Black et al.11):

  • 98.0 ml Hanks Balanced Salt Solution (Hyclone catalog number SH30588)
  • 100 μl 1M MgCl2 (100 mM end)
  • 100 μl 1M CaCl2 (100 mM end)
  • 2.0 ml 1M Hepes pH 7.3 (20 mM end)
  • 84 mg NaHCO3 (10 mM end)

References

  1. Carruthers, V. B., Moreno, S. N., Sibley, L. D. Ethanol and acetaldehyde elevate intracellular [Ca2+] and stimulate microneme discharge in Toxoplasma gondii. Biochem. J. 342 (Pt 2), 379-386 (1999).
  2. Moudy, R., Manning, T. J., Beckers, C. J. The loss of cytoplasmic potassium upon host cell breakdown triggers egress of Toxoplasma gondii. J. Biol. Chem. 276 (44), 41492-41501 (2001).
  3. Silverman, J. A. Induced activation of the Toxoplasma gondii nucleoside triphosphate hydrolase leads to depletion of host cell ATP levels and rapid exit of intracellular parasites from infected cells. J. Biol. Chem. 273 (20), 12352-12359 (1998).
  4. Stommel, E. W., Ely, K. H., Schwartzman, J. D., Kasper, L. H. Toxoplasma gondii: dithiol-induced Ca2+ flux causes egress of parasites from the parasitophorous vacuole. Exp. Parasitol. 87 (2), 88-97 (1997).
  5. Fruth, I. A., Arrizabalaga, G. Toxoplasma gondii: induction of egress by the potassium ionophore nigericin. Int. J. Parasitol. 37 (14), 1559-1567 (2007).
  6. Endo, T., Sethi, K. K., Piekarski, G. Toxoplasma gondii: calcium ionophore A23187-mediated exit of trophozoites from infected murine macrophages. Exp. Parasitol. 53 (2), 179-188 (1982).
  7. Hoff, E. F., Carruthers, V. B. Is Toxoplasma egress the first step in invasion. Trends Parasitol. 18 (6), 251-255 (2002).
  8. Wetzel, D. M., Chen, L. A., Ruiz, F. A., Moreno, S. N., Sibley, L. D. Calcium-mediated protein secretion potentiates motility in Toxoplasma gondii. J. Cell. Sci. 117 (Pt 24), 5739-5748 (2004).
  9. Lourido, S. Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature. 465 (7296), 359-362 (2010).
  10. Arrizabalaga, G., Ruiz, F., Moreno, S., Boothroyd, J. C. Ionophore-resistant mutant of Toxoplasma gondii reveals involvement of a sodium/hydrogen exchanger in calcium regulation. J. Cell. Biol. 165 (5), 653-662 (2004).
  11. Black, M. W., Arrizabalaga, G., Boothroyd, J. C. Ionophore-resistant mutants of Toxoplasma gondii reveal host cell permeabilization as an early event in egress. Mol. Cell. Biol. 20 (24), 9399-9408 (2000).
  12. Chandramohanadas, R. Apicomplexan Parasites Co-Opt Host Calpains to Facilitate Their Escape from Infected Cells. Science. , (2009).
  13. Eidell, K. P., Burke, T., Gubbels, M. J. Development of a screen to dissect Toxoplasma gondii egress. Mol. Biochem. Parasitol. 171 (2), 97-103 (2010).
  14. Pfefferkorn, E. R., Pfefferkorn, L. C. Toxoplasma gondii: isolation and preliminary characterization of temperature-sensitive mutants. Exp. Parasitol. 39 (3), 365-376 (1976).
  15. Pfefferkorn, E. R., Schwartzman, J. D., Kasper, L. H. Toxoplasma gondii: use of mutants to study the host-parasite relationship. Ciba. Found. Symp. 99, 74-91 (1983).
  16. Striepen, B. Genetic complementation in apicomplexan parasites. Proc. Natl. Acad. Sci. U. S. A. 99 (9), 6304-6309 (2002).
  17. White, M. W. Genetic rescue of a Toxoplasma gondii conditional cell cycle mutant. Mol. Microbiol. 55 (4), 1060-1071 (2005).
  18. Gubbels, M. J. Forward Genetic Analysis of the Apicomplexan Cell Division Cycle in Toxoplasma gondii. PLoS Pathog. 4 (2), e36-e36 (2008).
  19. Carruthers, V. B., Hakansson, S., Giddings, O. K., Sibley, L. D. Toxoplasma gondii uses sulfated proteoglycans for substrate and host cell attachment. Infect. Immun. 68 (7), 4005-4011 (2000).
  20. Camps, M., Boothroyd, J. C. Toxoplasma gondii: selective killing of extracellular parasites by oxidation using pyrrolidine dithiocarbamate. Exp. Parasitol. 98 (4), 206-214 (2001).
  21. Roos, D. S., Donald, R. G., Morrissette, N. S., Moulton, A. L. Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol. 45, 27-63 (1994).
  22. Gubbels, M. J., Li, C., Striepen, B. High-throughput growth assay for Toxoplasma gondii using yellow fluorescent protein. Antimicrob. Agents Chemother. 47 (1), 309-316 (2003).
  23. Carey, K. L., Westwood, N. J., Mitchison, T. J., Ward, G. E. A small-molecule approach to studying invasive mechanisms of Toxoplasma gondii. Proc. Natl. Acad. Sci. U. S. A. 101 (19), 7433-7438 (2004).
  24. Kafsack, B. F., Carruthers, V. B., Pineda, F. J. Kinetic modeling of Toxoplasma gondii invasion. J. Theor. Biol. 249 (4), 817-825 (2007).
  25. Hanash, S. M., Boehnke, M., Chu, E. H., Neel, J. V., Kuick, R. D. Nonrandom distribution of structural mutants in ethylnitrosourea-treated cultured human lymphoblastoid cells. Proc. Natl. Acad. Sci. U. S. A. 85 (1), 165-169 (1988).
  26. Kafsack, B. F. Rapid membrane disruption by a perforin-like protein facilitates parasite exit from host cells. Science. 323 (5913), 530-533 (2009).
  27. Lovett, J. L., Marchesini, N., Moreno, S. N., Sibley, L. D. Toxoplasma gondii microneme secretion involves intracellular Ca(2+) release from inositol 1,4,5-triphosphate (IP(3))/ryanodine-sensitive stores. J. Biol. Chem. 277 (29), 25870-25876 (2002).
  28. Nagamune, K. Abscisic acid controls calcium-dependent egress and development in Toxoplasma gondii. Nature. 451 (7175), 207-210 (2008).
  29. Tomita, T., Yamada, T., Weiss, L. M., Orlofsky, A. Externally triggered egress is the major fate of Toxoplasma gondii during acute infection. J. Immunol. 183 (10), 6667-6680 (2009).
  30. Persson, E. K. Death receptor ligation or exposure to perforin trigger rapid egress of the intracellular parasite Toxoplasma gondii. J. Immunol. 179 (12), 8357-8365 (2007).

Play Video

Cite This Article
Coleman, B. I., Gubbels, M. A Genetic Screen to Isolate Toxoplasma gondii Host-cell Egress Mutants. J. Vis. Exp. (60), e3807, doi:10.3791/3807 (2012).

View Video