نحن هنا وصف طريقة بسيطة لfunctionalization الزخرفة السيليكون والجرمانيوم مع monolayers التفاعل العضوي والتظاهر أكسيد خالية من ركائز منقوشة مع الجزيئات الصغيرة والبروتينات. نهج يحمي الأسطح تماما من أكسدة المواد الكيميائية ، ويوفر دقة السيطرة على التشكل الميزة ، ويوفر سهولة الوصول إلى أنماط التمييز كيميائيا.
The development of hybrid electronic devices relies in large part on the integration of (bio)organic materials and inorganic semiconductors through a stable interface that permits efficient electron transport and protects underlying substrates from oxidative degradation. Group IV semiconductors can be effectively protected with highly-ordered self-assembled monolayers (SAMs) composed of simple alkyl chains that act as impervious barriers to both organic and aqueous solutions. Simple alkyl SAMs, however, are inert and not amenable to traditional patterning techniques. The motivation for immobilizing organic molecular systems on semiconductors is to impart new functionality to the surface that can provide optical, electronic, and mechanical function, as well as chemical and biological activity.
Microcontact printing (μCP) is a soft-lithographic technique for patterning SAMs on myriad surfaces.1-9 Despite its simplicity and versatility, the approach has been largely limited to noble metal surfaces and has not been well developed for pattern transfer to technologically important substrates such as oxide-free silicon and germanium. Furthermore, because this technique relies on the ink diffusion to transfer pattern from the elastomer to substrate, the resolution of such traditional printing is essentially limited to near 1 μm.10-16
In contrast to traditional printing, inkless μCP patterning relies on a specific reaction between a surface-immobilized substrate and a stamp-bound catalyst. Because the technique does not rely on diffusive SAM formation, it significantly expands the diversity of patternable surfaces. In addition, the inkless technique obviates the feature size limitations imposed by molecular diffusion, facilitating replication of very small (<200 nm) features.17-23 However, up till now, inkless μCP has been mainly used for patterning relatively disordered molecular systems, which do not protect underlying surfaces from degradation.
Here, we report a simple, reliable high-throughput method for patterning passivated silicon and germanium with reactive organic monolayers and demonstrate selective functionalization of the patterned substrates with both small molecules and proteins. The technique utilizes a preformed NHS-reactive bilayered system on oxide-free silicon and germanium. The NHS moiety is hydrolyzed in a pattern-specific manner with a sulfonic acid-modified acrylate stamp to produce chemically distinct patterns of NHS-activated and free carboxylic acids. A significant limitation to the resolution of many μCP techniques is the use of PDMS material which lacks the mechanical rigidity necessary for high fidelity transfer. To alleviate this limitation we utilized a polyurethane acrylate polymer, a relatively rigid material that can be easily functionalized with different organic moieties. Our patterning approach completely protects both silicon and germanium from chemical oxidation, provides precise control over the shape and size of the patterned features, and gives ready access to chemically discriminated patterns that can be further functionalized with both organic and biological molecules. The approach is general and applicable to other technologically-relevant surfaces.
بروتوكول قدم هو شكل أو بدون حبر الطباعة microcontact التي يمكن تطبيقها عالميا لأية ركيزة قادرة على دعم بسيط وأمرت monolayers. في هذا الأسلوب ، والطوابع يجمد حافزا نقل نمط إلى السطح مع المجموعات الوظيفية ذات الصلة. لأن العملية لا تعتمد على نقل الحبر من الطابع إلى السطح قرار الحد من ناشر μCP التقليدية وعلى رد الفعل هو تفاديها ، والسماح الروتيني للتصنيع الكائنات النانو. إدماج نظام عالي أمر أساسي الجزيئي يوفر حماية كاملة من أشباه الموصلات من الأضرار الكامنة الأكسدة. في الوقت نفسه ، الأسلوب تؤيد تجميد رد الفعل من الجماعات الضخمة من خلال الاستفادة من رد الفعل overlayer الثانوية ؛ معا يحقق نظام الحماية وfunctionalization.
تقنية يبدأ مع تشكيل سندات الكربون على سطح مستقر يسمح للprimar خامل كيميائياذ أحادي الطبقة التي هي بمثابة عقبة فعالة لتشكيل أكسيد. تشكيل overlayer رد الفعل الثانوي توفر محطة NHS الجماعات الوظيفية التي تكون بمثابة نقطة ارتباط لمجموعة متنوعة من الأنصاف الكيميائية والبيولوجية. غير منقوشة في وقت لاحق هذا نظام مستقر bilayered الجزيئي باستخدام نهجنا μCP الحفاز. النهج المقدمة في هذه الدراسة توفر طريقة عامة لركائز أشباه الموصلات الزخرفة مع طائفة واسعة من المواد العضوية والبيولوجية. القدرة على خلق نمط العضوي أشباه الموصلات واجهات من دون الأجهزة ، ومكلفة يوفر المجمع العديد من الفرص في مجالات مثل الالكترونيات ، وتكنولوجيا النانو والكيمياء الحيوية والفيزياء الحيوية.
The authors have nothing to disclose.
نعترف الدعم المالي للجائزة NSF CMMI – 1000724.
Name of the reagent | Company/model |
---|---|
XPS spectrometer | Kratos Axis Ultra |
Atomic force microscope | Veeco D3100 |
SEM-FEG microscope | FEI XL30 |
Fluorescent microscope | Zeiss Axio Imager |
Heatblock | VWR |
Vacuum pump | Boc Edwards |
Water purification system | Millipore |
TESP silicon probes | Veeco |
Silicon | |
Pressure Vials | Chemglass |
Vacuum manifold | Chemglass |
UV Lamp | UVP |
Stamp Material | See references 20 and 18 |
PFTE syringe filters | VWR |
Nano Strip | Cyantek |
HCl | Sigma |
Ethanol | Sigma |
Acetone | Sigma |
HF | Sigma |
Chlorobenzene | Sigma |
PCl5 | Sigma |
Propenyl Magnesium Chloride | Sigma |
Octyl Magnesium Chloride | Sigma |
Carbon TetraChloride | Sigma |
Boc protected ethylenediamine | Sigma |
TFA | Sigma |
Sodium 2-mercaptoethanesulfonate | Sigma |
4N HCl solution in dioxane | Sigma |
Lysine-N,N-diacetic acid | Sigma |
Et3N | Sigma |
DMF | Sigma |
NiSO4 | Sigma |
NaP | Sigma |
NaCl | Sigma |
imidazole | Sigma |
PBS | Sigma |