Summary

In-vivo-Imaging von der Maus Spinal Cord mit Zwei-Photonen-Mikroskopie

Published: January 05, 2012
doi:

Summary

Ein minimal-invasiven Protokoll, um die Maus Wirbelsäule zu stabilisieren und sich wiederholende<em> In vivo</em> Rückenmarks Bildgebung mittels Zwei-Photonen-Mikroskopie ist beschrieben. Diese Methode verbindet eine Wirbelsäulen-Stabilisierung Gerät und ein Anästhetikum Regime die Atmungsorgane-induzierte Bewegungen zu minimieren und produzieren Rohstoffe Bilddaten, die keine Ausrichtung oder andere Nachbearbeitung erfordern.

Abstract

In-vivo-Bildgebung mittels Zwei-Photonen-Mikroskopie 1 in Mäusen, die gentechnisch verändert wurden, um fluoreszierende Proteine ​​in bestimmten Zelltypen 2-3 hat unsere Kenntnis der physiologischen und pathologischen Prozessen in zahlreichen Geweben in vivo 4-7 erweitert auszudrücken. In Studien des zentralen Nervensystems (ZNS), hat es eine breite Anwendung der in-vivo-Bildgebung des Gehirns, die eine Vielzahl von neuartigen und oft unerwartete Erkenntnisse über das Verhalten der Zellen wie Neuronen, Astrozyten, Mikroglia unter produziert wurde physiologische oder pathologische Zustände 8-17. Allerdings haben vor allem die technischen Komplikationen der Umsetzung der in-vivo-Bildgebung in Studien der lebenden Maus Rückenmark beschränkt. Insbesondere erzeugt die anatomische Nähe des Rückenmarks in die Lunge und das Herz signifikante Bewegung Artefakt, das zur Bildgebung im lebenden Rückenmark eine anspruchsvolle Aufgabe macht. </p>

Wir entwickelten eine neuartige Methode, die die inhärenten Grenzen des Rückenmarks Bildgebung überwindet durch die Stabilisierung der Wirbelsäule, wodurch der Atemwege-induzierte Bewegungen und damit die Erleichterung der Anwendung der Zwei-Photonen-Mikroskopie zur Abbildung der Maus Rückenmark in vivo. Dies ist durch die Kombination eines maßgeschneiderten Wirbelsäulenstabilisierung Gerät mit einer Methode der tiefen Narkose, was zu einer signifikanten Reduktion von Atemwegs-induzierte Bewegungen erreicht. Dieses Video-Protokoll zeigt, wie man einen kleinen Bereich des Lebendigen Rückenmarks, die unter physiologischen Bedingungen stabil über längere Zeiträume hinweg, indem sie Gewebeschäden und Blutungen auf ein Minimum gehalten werden kann aussetzen. Vertreter von RAW-Bildern erworben in vivo Details in hoher Auflösung die enge Beziehung zwischen Mikroglia und das Gefäßsystem. Ein Zeitraffer-Sequenz zeigt das dynamische Verhalten von Mikroglia-Prozesse in der lebenden Maus Rückenmark. Darüber hinaus zeigen einen kontinuierlichen Scan der gleichen z-frames die herausragende Stabilität, die dieser Methode erreichen können, um Stapel von Bildern und / oder Zeitraffer-Filme, die keine Bildausrichtung nach dem Erwerb zu generieren. Schließlich zeigen wir, wie diese Methode verwendet werden, um erneut und reimage der gleichen Gegend des Rückenmarks zu späteren Zeitpunkten werden, so dass für Längsschnittstudien der laufenden physiologische oder pathologische Prozesse in vivo.

Protocol

1. Aufbau der Wirbelsäule Stabilisierung Gerät Bestellen Sie die Narishige STS-A Compact Spinal Cord Klemmen und die Narishige MA-6N Head Holding-Adapter. Individuelles Design und einen Edelstahl-Bodenplatte, die beiden Narishige Teile in Ausrichtung zu halten, so dass der Kopf des Tieres wird unterstützt, während die Wirbelsäule und Schwanz eingeklemmt sind. Denken Sie daran, dass das gesamte Gerät sollte unter dem Mikroskop-Objektiv in der Regel auf eine abgesenkte Mikroskoptisch fit. <…

Discussion

Die hier beschriebene Methode ermöglicht einen stabilen und repetitive in vivo Bildgebung von dicht besiedelten fluoreszierende zellulären Strukturen in das Rückenmark von anästhesierten Mäusen mit zwei-Photonen-Mikroskopie. Die erreichte Stabilität ist das Ergebnis einer maßgeschneiderten Wirbelsäulenstabilisierung Gerät und ein Anästhetikum Regime, Atemwegs-induzierte Bewegung Artefakt reduziert. Die Wirbelsäule Stabilisierung Gerät ermöglicht Atempause der Unterseite der Maus Körper und kann mi…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Diese Arbeit wurde von der National Multiple Sclerosis Society unterstützt gewähren RG4595A1 / T auf DD und das NIH / NINDS gewährt NS051470, NS052189 und NS066361 zu KA Figuren und Filme angepasst und / oder nachgedruckt aus Davalos et al., J Neurosci Methods. 2008 Mär 30; 169 (1) :1-7 Copyright 2008, mit Genehmigung von Elsevier.

Materials

Name of the reagent Company Catalogue number Comments
Rhodamine B dextran Invitrogen D1841 70 kDa, diluted in
ACSF (3% w/v)
Ketamine HCl Bionichepharma NDC No: 67457-001-10 Injectable, 50mg/ml
Anased Lloyd Labs NADA No: 139-236 Xylazine injectable,
20mg/ml
Acepromazine Vedco NADA No: 117-531 Injectable,10mg/ml
Artificial tears
ointment
Phoenix
pharmaceutical
NDC No: 57319-760-
25
Lubricant
Betadine Fisher 19-061617  
McPherson-Westcott
Scissors
World Precision
Instruments
555500S Curved, blunt-tip
scissors
Straight Forceps World Precision
Instruments
555047FT Toothed tip forceps
Small vessel cauterize Fine Science Tools 18000-00  
Gelfoam Pharmacia,Pfizer Inc. Mixer Mill MM400  
Compact spinal cord
clamps
Narishige STS-A  
Head holding adaptor Narishige MA-6N  
Gelseal Amersham
Biosciences Corp.
80-6421-43  
Lactated Ringers Baxter Healthcare 2B8609  
Buprenex Reckit Benckiser
Pharmaceuticals Inc.
NDC No: 12496-
6757-1
Buprenorphine,
injectable
Baytril Bayer NADA 140-913 Enrofloxacin,
antibacterial injectable
2.27% (20ml)
Heating pad – Large Fine Science Tools 21060-10  

References

  1. Denk, W., Strickler, J. H., Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science. 248, 73-76 (1990).
  2. Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509-544 (1998).
  3. Feng, G. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 28, 41-51 (2000).
  4. Helmchen, F., Denk, W. Deep tissue two-photon microscopy. Nat. Methods. 2, 932-940 (2005).
  5. Germain, R. N., Miller, M. J., Dustin, M. L., Nussenzweig, M. C. Dynamic imaging of the immune system: progress, pitfalls and promise. Nat. Rev. Immunol. 6, 497-507 (2006).
  6. Misgeld, T., Kerschensteiner, M. In vivo imaging of the diseased nervous system. Nat. Rev. Neurosci. 7, 449-463 (2006).
  7. Svoboda, K., Yasuda, R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron. 50, 823-839 (2006).
  8. Davalos, D. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752-758 (2005).
  9. Nimmerjahn, A., Kirchhoff, F., Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 308, 1314-1318 (2005).
  10. Grutzendler, J., Kasthuri, N., Gan, W. B. Long-term dendritic spine stability in the adult cortex. Nature. 420, 812-816 (2002).
  11. Svoboda, K., Denk, W., Kleinfeld, D., Tank, D. W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature. 385, 161-165 (1997).
  12. Trachtenberg, J. T. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature. 420, 788-794 (2002).
  13. Wang, X. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat. Neurosci. 9, 816-823 (2006).
  14. Christie, R. H. Growth arrest of individual senile plaques in a model of Alzheimer’s disease observed by in vivo multiphoton microscopy. J. Neurosci. 21, 858-864 (2001).
  15. Tsai, J., Grutzendler, J., Duff, K., Gan, W. B. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat. Neurosci. 7, 1181-1183 (2004).
  16. Grutzendler, J., Gan, W. B. Two-photon imaging of synaptic plasticity and pathology in the living mouse brain. NeuroRx. 3, 489-496 (2006).
  17. Takano, T., Han, X., Deane, R., Zlokovic, B., Nedergaard, M. Two-photon imaging of astrocytic Ca2+ signaling and the microvasculature in experimental mice models of Alzheimer’s disease. Ann. N. Y. Acad. Sci. 1097, 40-50 (2007).
  18. Jung, S. Analysis of Fractalkine Receptor CX3CR1 Function by Targeted Deletion and Green Fluorescent Protein Reporter Gene Insertion. Mol. Cell. Biol. 20, 4106-4114 (2000).
  19. Kerschensteiner, M., Schwab, M. E., Lichtman, J. W., Misgeld, T. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat. Med. 11, 572-577 (2005).
  20. Kim, J. V. Two-photon laser scanning microscopy imaging of intact spinal cord and cerebral cortex reveals requirement for CXCR6 and neuroinflammation in immune cell infiltration of cortical injury sites. J. Immunol. Methods. 352, 89-100 (2010).
  21. Shakhar, G. Stable T cell-dendritic cell interactions precede the development of both tolerance and immunity in vivo. Nat. Immunol. 6, 707-714 (2005).
  22. Tadokoro, C. E. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J Exp Med. 203, 505-511 (2006).
  23. Lindquist, R. L. Visualizing dendritic cell networks in vivo. Nat. Immunol. 5, 1243-1250 (2004).
  24. Schwickert, T. A. vivo imaging of germinal centres reveals a dynamic open structure. Nature. 446, 83-87 (2007).

Play Video

Cite This Article
Davalos, D., Akassoglou, K. In vivo Imaging of the Mouse Spinal Cord Using Two-photon Microscopy. J. Vis. Exp. (59), e2760, doi:10.3791/2760 (2012).

View Video