Summary

激光捕获显微切割技术的果蝇外周神经元

Published: May 24, 2010
doi:

Summary

在这个视频文章中,我们目前的方法隔离单个或多个<em>果蝇</em> DA神经元使用红外线(IR)的捕获激光捕获显微切割(LCM)的类三龄幼虫。从孤立的神经元获得的RNA可以很容易地用于下游应用,包括QRT – PCR或芯片分析。

Abstract

树突状树枝状(DA)神经元果蝇周围神经系统(PNS)在调查的基础类特定的树突形态发生 1,2的分子机制提供一个极好的的模型系统。为了方便类特定的DA神经元发展的分子生物学分析,至关重要的是在一个纯粹的人口获得这些细胞。虽然一系列不同的细胞和组织特异性的RNA分离技术中存在的果蝇细胞,包括基于磁珠细胞净化3,4,荧光激活细胞分选(FACS)5-8,和RNA结合蛋白为基础的战略9 ,概无这些方法可以很容易地利用空间精度与高度隔离的单个或多个类特定果蝇DA能神经元。激光捕获显微切割(LCM)已成为一个非常强大的工具,可以用来从组织切片中分离出特定的细胞类型,具有高度的空间分辨率和精度。然后,可以从分离的细胞获得的RNA用于包括在一个给定的细胞类型10-16的QRT – PCR和基因芯片表达谱分析。迄今为止,液晶显示模块没有被广泛应用在果蝇的组织和细胞17,18,包括发展第三龄幼虫阶段的DA能神经元的分析。

在这里,我们目前对果蝇的大神经元使用的红外(IR)类LCM的隔离,我们优化的协议。这种方法允许单一,类特定或多个的DA能神经元具有高特异性和空间分辨率的捕捉。年龄相匹配的三龄幼虫表达的UAS – mCD8:绿色荧光蛋白 19基因的控制下的IV级DA神经元具体PPK – GAL4 20驱动程序或泛DA神经元特异性21 – 7 – GAL4 21驱动程序是用于这些实验。从孤立的DA能神经元获得的RNA是非常高的质量,并可以直接用于下游应用,包括QRT – PCR或芯片分析。此外,这种液晶显示模块协议,可以方便地用于捕捉到其他果蝇的细胞类型的不同阶段的发展依赖于具体,GAL4驱动 GFP的表达模式的细胞类型的。

Protocol

对果蝇 LCM的外周神经元的一般意见允许来自6个小时,一个星期或液晶显示模块不再取决于组织类型和所需的细胞数量。 所有的程序都进行严格的无RNase条件以下的标准程序。幼虫表达无论是21 – 7 – GAL4,无人机mCD8::GFP或PPK – GAL4 UAS – mCD8::GFP转基因记者线,这些实验中使用。 1。准备幼虫收集30-40年龄相?…

Discussion

本协议描述了我们对果蝇通过LCM的外周神经元的隔离的优化方法。虽然这LCM协议旨在为特定的隔离单,类特定或多个果 ​​蝇的大神经元从3龄幼虫阶段的发展,稍作修改的协议可以很容易地适用于其他果蝇的细胞类型的捕捉从所有发展使用不同的GAL4阶段记者UAS – mCD8 – GFP转基因标签的细胞类型或类型的利益。我们的研究结果表明,激光捕获微解剖DA?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢博士。裕农扬和韦斯Grueber提供援助,带LCM飞的股票,在本研究中使用的,弗吉尼亚Espina,伊曼纽尔Petricoin博士和博士兰斯利奥塔。作者承认这项研究的支持(DNC)和乔治梅森大学教务长办公室(EPRI)的托马斯F和凯特米勒Jeffress纪念信托。

Materials

Material Name Type Company Catalogue Number Comment
10X Phosphate Buffered Saline (PBS)   MP Bioproducts PBS10X02 Diluted to 1X working solution
2.5% Trypsin   Sigma-Aldrich T1426  
RNase-AWAY   Sigma-Aldrich 83931  
Xylenes, histological grade   Fisher Scientific X3S-4  
RNAse-free water   Fisher Scientific BP561-1  
Optimal Cutting Temperature (OCT) compound   Tissue-Tek 4583  
PicoPure RNA Isolation Kit   Molecular Devices KIT0204 Follow manufacturer’s instructions
Thin walled reaction tube with domed cap   GeneAmp, Applied Biosystems N8010611  
ExtracSure Sample Extraction Device   Molecular Devices LCM 0208  
Incubation Block for sample extraction from CapSure HS Caps   Molecular Devices LCM0505  
Alignment Tray for CapSure HS LCM Caps and ExtracSure Sample Extraction Devices   Molecular Devices LCM0504  
CapSure HS LCM caps   Molecular Devices LCM0213  
75×100 mm glass slides   Fisher Scientific 12-544-3  
Tissue embedding molds   Fisher Scientific NC9642669  
Polypropylene pestle for 1.5 ml microcentrifuge tubes   USA Scientific 1415-5390  
70% Ethanol; 95% Ethanol; 100% Ethanol        
Dry ice        

Equipment:

  • Cryostat
  • 50 ml conical tube for slide fixation, rinsing, trypsin treatment and ethanol/xylene dehydration
  • -80°C freezer
  • Incubator
  • PixCell IIe LCM Instrument with Fluor 300 epifluorescence optics optimized for EGFP (Molecular Devices-Molecular Devices)

References

  1. Corty, M. M., Matthews, B. J., Grueber, W. B. Molecules and mechanisms of dendrite development in Drosophila. Development. 136, 1049-1061 (2009).
  2. Parrish, J. Z., Emoto, K., Kim, ., Jan, Y. N. Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields. Annu. Rev. Neurosci. 30, 399-423 (2007).
  3. Wang, X., Starz-Gaiano, M., Bridges, T., Montell, D. Purification of specific cell populations from Drosophila tissues by magnetic bead sorting, for use in gene expression profiling. Nature Protocols. , (2008).
  4. Iyer, E. P. R., Iyer, S. C., Sulkowski, M. J., Cox, D. N. Isolation and purification of Drosophila peripheral neurons by magnetic bead sorting. J Vis Exp. 34, 2912-2917 (2004).
  5. Tirouvanziam, R., Davidson, C. J., Lipsick, J. S., Herzenberg, L. A., Tirouvanziam, R., Tirouvanziam, R. Fluorescence-activated cell sorting (FACS) of Drosophila hemocytes reveals important functional similarities to mammalian leukocytes. Proc. Natl. Acad. Sci. 101, 2912-2917 (2004).
  6. Shigenobu, S., Arita, K., Kitadate, Y., Noda, C., Kobayashi, S. Isolation of germline cells from Drosophila embryos by flow cytometry. Dev. Growth Differ. 48, 49-57 (2006).
  7. Reeves, N., Posakony, J. W. Genetic programs activated by proneural proteins in the developing Drosophila PNS. Dev. Cell. 8, 413-425 (2005).
  8. Jinushi-Nakao, S. Knot/Collier and Cut control different aspects of dendrite cytoskeleton and synergize to define final arbor shape. Neuron. 56, 963-978 (2007).
  9. Yang, Z., Edenberg, H. J., Davis, R. L. Isolation of mRNA from specific tissues of Drosophila by mRNA tagging. Nucl. Acids Res. 33, (2005).
  10. Appay, V. Sensitive Gene Expression Profiling of Human T Cell Subsets Reveals Parallel Post-Thymic Differentiation for CD4+ and CD8+ Lineages. J. Immunol. 179, 7406-7414 (2007).
  11. Ginzinger, D. G. Gene quantification using real-time quantitative PCR: An emerging technology hits the mainstream. Exp. Hematol. 30, 503-512 (2002).
  12. Keays, K. M., Owens, G. P., Ritchie, A. M., Gilden, D. H., Burgoon, M. P. Laser capture microdissection and single-cell RT-PCR without RNA purification. J. Immunol. Methods. 302, 90-98 (2005).
  13. Volgin, D. V., Swan, J., Kubin, L. Single-cell RT-PCR gene expression profiling of acutely dissociated and immunocytochemically identified central neurons. J. Neurosci. Methods. 136, 229-236 (2004).
  14. Emmert-Buck, M. R. Laser capture microdissection. Science. 274, 998-1001 (1996).
  15. Xiao, W. Gene expression profiling in embryonic mouse lenses. Mol. Vis. 12, 1692-1698 (2006).
  16. Scharschmidt, T. Analysis of human osteoarthritic connective tissue by laser capture microdissection and QRT-PCR. Connect. Tissue Res. 48, 316-323 (2007).
  17. Spletter, M. L. regulates Drosophila olfactory projection neuron identity and targeting specificity. Neural Dev. 2, 14-14 (2007).
  18. Hoopfer, E. D., Penton, A., Watts, R. J., Luo, L. Genomic analysis of Drosophila neuronal remodeling: a role for the RNA-binding protein Boule as a negative regulator of axon pruning. J. Neurosci. 28, 6092-6103 (2008).
  19. Lee, T., Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron. 22, 451-461 (1999).
  20. Grueber, W. B. Projections of Drosophila multidendritic neurons in the central nervous system: links with peripheral dendrite morphology. Development. 134, 55-64 (2007).
  21. Song, W., Onishi, M., Jan, L. Y., Jan, Y. N. Peripheral multidendritic sensory neurons are necessary for rhythmic locomotion behavior in Drosophila larvae. Proc. Natl. Acad. Sci. USA. 104, 5199-5204 (2007).
  22. Espina, V. Laser capture microdissection. Nat. Prot. 1, 586-603 (2006).
  23. Livak, K. J., Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25, 402-408 (2001).

Play Video

Cite This Article
Iyer, E. P. R., Cox, D. N. Laser Capture Microdissection of Drosophila Peripheral Neurons. J. Vis. Exp. (39), e2016, doi:10.3791/2016 (2010).

View Video