Humanized mouse models provide a more accurate representation of the human immune microenvironment. This manuscript describes the process in which these models are created through a renal graft of human thymus, injection of human CD34+ cells, and the targeted delivery of human cytokine transgenes to promote CD34+ cell proliferation and differentiation.
Animal models provide a vital translation between in vitro and in vivo biomedical research. Humanized mouse models provide a bridge in the representation of human systems, thereby allowing for a more accurate study of pathogenesis, biomarkers, and many other scientific queries. In this method described, immune-deficient NOD-scid IL2Rγnull (NSG) mice are implanted with autologous thymus, injected with liver-derived CD34+ cells followed by a series of injected cytokine deliveries. In contrast to other models of a similar nature, the model described here promotes an improved reconstitution of immune cells by delivering cytokines and growth factors via transgenes encoded in AAV8 or pMV101 DNA-based vectors. Moreover, it offers long-term stability with reconstituted mice having an average lifespan of 30 weeks after CD34+ injections. Through this model, we hope to provide a stable and impactful method of studying immunotherapy and human disease in a murine model, thus demonstrating the need for predictive preclinical models.
While animal models have created a deeper understanding of cellular and molecular systems, the challenge remains in elucidating the intricacies of species-specific systems, such as immunity, physiology, and other areas of pathology. Non-human primates (NHP), such as chimpanzees, have historically been used to compensate for the wanting gaps in model research; however, the NHP model can be quite costly and inaccessible, particularly as their use has been banned in Europe1.
Following a successful grafting procedure, the murine system replicates the human immune system, as demonstrated through the repopulation of the lymphoid organs. The development of mice with functional human immune systems provides the opportunity to conduct translational research on human immunity in a variety of contexts. Immunodeficient mice engrafted with human cells and tissues that can successfully replicate an operative human immune system facilitate the study of hematopoiesis, immunity, gene therapy2, infectious diseases3, cancer4, and regenerative medicine5. Our group and some of our collaborators have published results using this model that demonstrates preclinical models of cutaneous melanoma6. This model is versatile enough to be applied to innumerable fields beyond the context of melanoma and immunotherapy research.
Peripheral blood mononuclear cells (PBMCs) are commonly used for humanization as they result in robust reconstitution of T cells, which have established roles in immune tolerance; however, because of their low rate of self-renewal and their high rate of mature lineage-committed cells, PBMCs are often replaced with human-stem-cell (HSC)-based products, which can be derived from fetal liver7. In combination with these derived HSC products, the addition of implanting the human thymus under the kidney capsules of NSG mice creates a system capable of supporting human T cell development. This model, known as the bone marrow-liver-thymus (BLT), is highly advantageous because it allows for multilineage hematopoiesis, T-cell education in the autologous thymus, and HLA restriction8.
The model proposed in this manuscript is a modified BLT model with additional cytokine delivery. Proinflammatory cytokines have been shown to bolster the abilities of effector immune cells, specifically through IL-15 based immunotherapies9. CD45+ lymphocytes are observed in the peripheral blood of humanized mice (Hu-mice) approximately 8-12 weeks after human CD34+ cell injection, displaying an evident increase in reconstitution compared to circulating blood of regular NSG mice. Using the Adeno-Associated vector to deliver human IL-3, IL-7, and GM-CSF, the levels of human CD45+ cells increased in circulation compared to those mice that do not receive the cytokines. The addition of the DNA Combo II cytokines (SCF, FLT3, CKIT, and THPO) improves T cells and myeloid cell differentiation10. The addition of cytokine delivery distinguishes this method amongst the other Hu-mice models, as is supported by published data10.
The development of this model with an innate and adaptive human immune response has allowed to publish data regarding therapy resistance and the tumor microenvironment10. Provided laboratories can access tissue samples to utilize this method; this Hu-mice model has great potential for other labs to study similar fields as well as expand into other areas of immunotherapy and preclinical studies.
All protocols involving the use of animals are closely monitored by the Wistar Institute's Institutional Animal Care and User Committee (IACUC). The laboratory adheres to the guidelines set by this committee and the attending veterinarian to ensure the health, safety, and wellbeing of the animals involved. Prior to following this protocol, veterinarian and IACUC approval are required, and individuals may have variations in the specific surgical techniques and animal handling compared to the protocol per the advice of those aforementioned parties involved in animal welfare.
NOTE: Tissue samples can be frozen until ready for use. Additionally, CD34+ isolation can be performed the same day or the following day as the renal graft surgery. This information will inform when Busulfan will be injected: if intending to conduct surgery on the same day as isolation, Busulfan should be injected preemptively in preparation of receiving tissue. Treat thirty female 5-7 week-old NSG mice with 30 mg/kg (100 µL, PBS 1x) of a freshly made myelo-depleting drug; Busulfan injected IP 24 h before surgery.
1. CD34+ cells isolation
2. Thymic processing
3. Subrenal capsule grafting and CD34 cells injection
Following successful surgery and appropriate postoperative injections, CD34+ differentiation can be confirmed via flow cytometry. Approximately 8 weeks after surgery, mice are bled in preparation for FACS, recurring every 2 weeks until a specific threshold of human immune cells is met as is described previously10. Briefly, 100 mL of blood was collected in blood collection tubes coated with lithium and heparin. After the lysis of red blood cells using ACK lysis buffer, the cells were washed with FACS buffer (Phosphate buffered saline, 2% FBS, and 0.1% sodium azide) and centrifuged. The cell pellet was then resuspended in 100 mL of FACS buffer and incubated with a panel of antibodies (anti-mouse CD45, anti-human CD45, anti-CD3, anti-CD4, anti-CD8, and anti-CD20). To identify live and dead cells, cells were stained with DAPI, and the lymphocytes were gated based on the FSC-A and SSC-A parameters. A gate was generated to select the live cells and from those the single cells. From those single, live lymphocytes population, we first distinguished the human from the mouse CD45+ cells. CD20+ and CD3+ cells were identified from the human CD45+ cells, and finally, CD4+ and CD8+ cells were identified from the CD3+ cells (T cells). To elaborate, Hu-mice are ready to be used for immunotherapy experiments when they hit the threshold of >25% HuCD45+ in the total lymphocytes and >8%-10% CD8+ in the human CD3+ cells (Figure 1). In the early stages of reconstitution, CD20+ levels are high, and CD3+ levels are low. As cells proliferate and reconstitute with time, the CD20+ levels drop as CD3+ levels rise. This correlates with when the mouse thymus, mouse spleen, and the renal capsule-grafted Hu-thymus get repopulated with human lymphoid precursor cells that undergo differentiation.
Figure 1: Flow cytometry analysis of a reconstituted mouse. The analysis is gated to isolate the different populations of cells, beginning with the total population of lymphocytes, then distinguishing between live cells, single cells, and various stem cell populations with specific attention paid to the CD45+ and CD8+ to ascertain proximity to the thresholds, as is previously reported10. Please click here to view a larger version of this figure.
This manuscript has herein described generating humanized mice via human fetal thymus grafted under the renal capsule and subsequent CD34+ injection to recreate a human immune system.
While the protocol functions to create the best model possible, certain steps are essential to viability. For example, during the CD34+ isolation, it is essential that one looking through the microscope can identify CD34+ cells. Though it may seem redundant, automatic counting machines do not always identify these cells due to their morphology, and the machine itself may misidentify the debris as positive cells. Therefore, it is crucial to identify these cells manually. Moreover, it is essential to confirm that the thymus is truly entering the kidney capsule during renal graft surgery. This can be visualized or palpated: the surgeon should be able to feel the thymus pieces entering the kidney.
Importantly, the process has a few caveats that can determine the success of the model. The first being, the quality of the fetal tissue must be individually assessed to determine whether the isolated cells could potentially be toxic to the mouse. For example, tissue aged above 20 weeks appears firmer and cuts more precisely during preparation. There is generally less degradation. These qualities are general indicators of better caliber tissue. A second caveat of the technique regards the quantity and quality of CD34+ cells; the number of cells produced is variable and sometimes may not provide enough for injections. In these instances, it is possible to circumvent the problem by injecting the liver mononuclear cells isolated earlier in the protocol. Third, after the implementation of a successful model, the mice may begin to develop graft-versus-host disease (GVH) around 25 weeks of age. While the model can last up to 30 weeks, it is around 25 weeks that the investigators should pay careful attention to the mice-looking changes in body score, loss of hair, and facial distress. Around this point, one should always consult with the attending veterinarian, determine the quality of life, and attend to the mice as dictated or euthanize.
The main difference between this protocol and other humanized models is the use of cytokines to improve the proliferation and stabilization of hematopoietic cells first and then enhance the differentiation of immune cells. The effects of the use of the cytokines is addressed by the increased levels of human CD45+ cells in mouse peripheral blood circulation and aided in T-cell and myeloid cell differentiation compared to those mice with no cytokines, as previously reported10.
In summary, the described model provides a humanized mouse with a stable lifespan and functional recapitulation of the human immune cells. The model can be recreated by others in an effort to study a myriad of questions relating to immunotherapy, viral research, regenerative medicine, and numerous fields beyond these contexts.
The authors have nothing to disclose.
Thanks to Wistar Flow-Cytometry, Molecular Screening, Vector Core, and Animal Facility for their support. This work was made possible with support from the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation.
ACK lysis buffer | Life Technologies Corporation | ||
BD Microcontainer | BD | blood collection tubes | |
Busulfan | Sigma | B2635-25g | Irradiating drug; light sensitive |
CD34 Microbeads | Miltenyi Biotec | 130-046-702 | antibody beads kit; stored at 4 °C |
CKIT | Aldevron | custom | cytokine; stored at -20 °C |
Collagenase/Dispase | Roche Diagnostics | 11097113001 | Stored at 4 °C |
FcR Blocking reagent | Miltenyi Biotec | 130-046-702 | antibody beads kit; stored at 4 °C |
Fetal tissue (liver and thymus) | Advanced Bioscience Resources | Delivered same day or overnight | |
Ficoll | GE Healthcare | 17-1440-03 | Stored at room temperature |
FLT3 | Aldevron | 125964 | cytokine; stored at -20 °C |
Forceps | Various | Various | |
Hamilton syringe needle | Various | Various | 22 G; 3 point; 2" length |
Hemostats | Various | Various | |
MS columns | Miltenyi Biotec | 130-042-201 | magnetic separator |
PBS | Gibco | 14190-136 | Stored at room temperature |
Primocin | Invivogen | amt-pm1 | antibiotic; stored at 4 °C |
RPMI | Corning | 10-040-CM | Stored at 4 °C |
SCF | Aldevron | 125962 | cytokine; stored at -20 °C |
Surgical scissors | Various | Various | |
THPO | Aldevron | 125963 | cytokine; stored at -20 °C |
Tissue treated petri dish | Corning | 430167 | |
VetBond glue | 3M | 1469SB | glue |
Visorb suture | Stoelting Co | 5046 | absorbable suture, size 4, 19 mm cutting |
.