Explants of the central region of rat lens epithelia differentiate synchronously when cultured in the presence of FGF-2. Immunofluorescence microscopy of such cultures can provides novel information about gene expression and signaling events associated with terminal differentiation.
Part 1: Removal of lenses
Materials and reagents:
Procedure:
Part 2: Microdissection of explants
Materials and reagents:
Procedure:
Part 3: Microdissection and culture of central explants
Materials and reagents:
Procedure:
Part 4: Harvesting of explants for analysis of events associated with differentiation
1. Harvesting explants for analysis of protein or RNA
Materials:
Procedure:
2. Harvesting explants for immunofluorescence
Materials and reagents:
Procedure:
Figure 1 A. The peripheral epithelium expresses differentiation-specific proteins. The explant shown was immunostained for N-cadherin immediately after microdissection. Expression is seen in a band of cells in the peripheral epithelium, indicating that cells in this region have begun to differentiate. B. The peripheral epithelium can be trimmed away to remove cells that express N-cadherin and other differentiation-specific proteins. The red annulus represents the location of cells that express N-cadherin, while the small square outlined in gray represents the quadrant of the epithelium shown in panel 1A. The peripheral epithelium can be removed by four scalpel cuts, leaving a central square that contains only cells that have not yet begun to differentiate.
The rat lens explant system has been successfully used by a number of laboratories to study terminal differentiation of lens epithelial cells to lens fibers 21,3,4,5. When exposed to FGF-2 at 100ng/ml the explants will begin to show changes in signaling within minutes 6, with changes in morphology and gene expression appearing sequentially over several days 3,4,5. The cultures remain viable for 2-3 weeks if care is taken to prevent contamination.
The central explants described in this protocol are especially useful for studying the sequence of events associated with differentiation, since they contain few if any cells that express differentiation markers before FGF-2 is added 1,5. The cells then differentiate synchronously, as a cohort, making it possible to follow the time course of signaling and transcriptional events associated with differentiation. Culturing explants for different lengths of time thus provides accurate temporal information about the sequence events. Specific inhibitors may be added to the culture medium to identify relevant signaling pathways. Explants may be used to analyze protein expression by SDS gel electrophoresis and immunoblotting or to analyze expression of specific mRNAs by RT-PCR. Protein yields range from 20-50 μg/explant and RNA yield is approximately 200 – 600 ng/explant, depending on the length of the culture period. We generally find that 5-6 explants per dish will provide sufficient protein or RNA for several assays. RNA from explants can also be used to prepare cDNA for assessing gene expression by microarray analysis, which can identify novel genes that may be critical for differentiation. Explants may also be transfected. Although transfection efficiency is generally low, it is sufficient for assaying reporter genes 4;7;8. Immunofluorescence microscopy of the explants provides a useful adjunct to biochemical methods by determining the subcellular location of proteins of interest. Thus, the preparation and culture of rat lens explants provides a powerful system for studying terminal lens differentiation in mammals, which can complement in vivo techniques, such as generation of transgenic and knock-out mice.
The preparation of lens epithelial explants has been adapted from methods originated in the laboratory of Dr. John McAvoy 9. This work is funded by the National Eye Institute, Intramural Research Program Z01-EY000238-22