Here we present a protocol to develop a dominant-negative inducible system, in which any protein can be conditionally inactivated by reversibly overexpressing a dominant-negative mutant version of it.
Dominant-negative (DN) protein inhibition is a powerful method to manipulate protein function and offers several advantages over other genome-based approaches. For example, although chimeric and Cre-LoxP targeting strategies have been widely used, the intrinsic limitations of these strategies (i.e., leaky promoter activity, mosaic Cre expression, etc.) have significantly restricted their application. Moreover, a complete deletion of many endogenous genes is embryonically lethal, making it impossible to study gene function in postnatal life. To address these challenges, we have made significant changes to an early genetic engineering protocol and combined a short (transgenic) version of the Rb1 gene with a lysosomal protease procathepsin B (CB), to generate a DN mouse model of Rb1 (CBRb). Due to the presence of a lysosomal protease, the entire CB-RB1 fusion protein and its interacting complex are routed for proteasome-mediated degradation. Moreover, the presence of a tetracycline inducer (rtTA) element in the transgenic construct enables an inducible and reversible regulation of the RB1 protein. The presence of a ubiquitous ROSA-CAG promoter in the CBRb mouse model makes it a useful tool to carry out transient and reversible Rb1 gene ablation and provide researchers a resource for understanding its activity in virtually any cell type where RB1 is expressed.
Most approaches aiming at the gene and protein ablations rely on permanent processes, which generally lead to the complete elimination or truncation of the gene, RNA sequences, or protein of interest (POI). The overall goal of this method is to engineer a recombinant protein to abolish the function of endogenous, wild-type protein. We have revisited and revamped an alternative strategy1,2, which allows for the temporary ablation of a POI through DN inhibition. This method works for both multimeric and monomeric peptides but is best suited for proteins that function in a multimeric assembly.
The method consists of fusing the lysosomal protease CB to a subunit of a multimeric POI (CB fusion complex). The resultant CB fusion complex can interact with and proteolytically digest the endogenous protein or divert the entire CB-POI complex to the lysosome to be degraded3. Moreover, a combination of the CB fusion complex with the inducible nature of the tetracycline-controlled transcriptional activation (TetO) system allows for an inducible and controlled expression of the transgene in a reversible fashion2. Although useful in many circumstances, the complete deletion of genes or proteins in vivo can result in lethality4,5,6. Likewise, tissue-specific, conditional deletion of some genes or proteins using the Cre/Lox system may not be straightforward, as it will, ultimately, lead to the permanent loss of critical genomic elements7. Therefore, depending on the gene or POI, neither of these approaches will be effective in providing a useful model for subsequent studies, particularly genes' or proteins' functional studies in late postnatal and adult mice.
To circumvent the problems associated with such approaches and provide proof-of-principle on the effectiveness of the proposed method, we have chosen to test the method presented here by generating a conditional DN version of the Retinoblastoma 1 (RB1) protein. Several options have been proposed8,9,10 to abolish the function of endogenous RB1; however, all of them faced some of the same limitations discussed above: permanent germline deletion of RB1 is embryonically lethal, and, consistent with its tumor suppressor role, permanent RB1 conditional deletion leads to a variety of tumors11. Even though a DN version of RB1 does not seem to occur naturally, a better alternative to the currently available strategies should allow for a temporally controlled inactivation of the endogenous RB1 and provide an alternative mechanism to eventually restore its function. The basis for such a construct was described over two decades ago1. However, due to technological limitations, it lacked a mechanism to control transgene activation, response, and tissue specificity. This study is the first to combine the elegance of the doxycycline (Dox)-dependent transcriptional system with an engineered transgenic construct of lysosomal protease CB and Rb1 proteins. The resulting CBRb mouse model allows for a temporarily regulated Dox-mediated RB1 regulation2. The advantage of using such a proteome-based approach to study gene function is that it can be adopted for any gene of interest, with minimal information on its activity.
The proposed DN transgene strategy offers many advantages over traditional approaches. First, DN protein inhibition leads to only a partial ablation in protein activity, thus preserving a residual endogenous expression. Such an outcome is highly desirable in situations where a complete elimination of protein activity leads to embryonic lethality, greatly limiting any investigation to study gene function in a live mouse. Second, the presence of the TetO system enables transgene activation only in the presence of an antibiotic, which allows for an efficient and reversible control of the transgene activity. Thus, by ceasing the antibiotic administration, the transgenic system can be deactivated, and a normal RB1 expression is back in place. Third, the specificity of the transgene expression can vary depending on the promoter of choice. While we have chosen the ubiquitous ROSA-CAG promoter for proof-of-principle, placing the transgene under a tissue-specific promoter is likely to restrict unwanted transgene expression and facilitate studies on the therapeutic application of this transgene methodology.
Generation of the transgenic CBRb mouse and all animal care and experiments associated with the study were approved by the Creighton University Institutional Animal Care and Use Committee (IACUC) and performed by their guidelines.
1. Transgenic CB-Myc6-Rb1 Construct
NOTE: The cloning of CBRb into a pTet_Splice vector was done in a multi-step process (Figure 1A and 1B).
2. In Vitro Testing of the TetO-DN-CB-myc6-Rb1 Transgene
3. Generation of CBRb+/ROSA-CAG-rtTA+ (CBRb) Transgenic Mice and In Vivo Testing of the DN-CBRb Approach
Generally, designing a DN mutation requires a considerable amount of information on the structure and function of the POI. In contrast, the DN strategy presented here is particularly useful when the structural and functional information for the POI is limited. If the POI is a multimeric protein, a fusion of one subunit to a lysosomal protease can dominantly inhibit the assembled multimer and, potentially, other ligands through a combination of proteolysis of the endogenous subunits and subcellular diversion of the multimer to the lysosome. To confirm successful cloning and test the effectiveness of Dox-regulated transgene activation, purified pTet-Splice plasmid containing the TetO-DN-CB-myc6-Rb1 construct was transfected into mouse NIH3T3 cells that stably expressed the rtTA protein, but not Rb113. In the absence of Dox, cells expressing rtTA displayed no RB1 expression, whereas a robust RB1 expression was observed in the presence of Dox (Figure 2A). Next, to test the reversibility of the system, we cotransfected HEK293 cells (which endogenously express Rb114) with purified pTet-Splice/TetO-DN-CB-myc6-Rb1 and the pCMV-Tet3G vectors. As expected, the expression of the endogenous RB1 protein was significantly inhibited on transgene activation by the addition of Dox in the cell culture media (Figure 2B). To test the reversibility of the system, following a 24 h period, in a subset of HEK293 cells, we replaced the Dox-containing cell culture media with fresh Dox-free media and incubated the cells for an additional 24 h. Supporting the Dox-regulated reversibility, RB1 expression was restored upon Dox removal from the culture media (Figure 2B).Transfected HEK293 cells that were not treated with Dox or Dox-treated HEK293 cells transfected with the pCMV-Tet3G vector only (Figure 2B) showed basal levels of endogenous RB1 expression. Because NIH3T3 cells do not express RB1 protein naturally, the positive RB1 reactivity is due to the accumulation of the transgenic RB1 protein. Given our interest in the potential proliferative effect of the TetO-DN-CB-myc6-Rb1 construct in the auditory system, we measured the total DNA content in pTet-Splice/TetO-DN-CB-myc6-Rb1– and pCMV-Tet3G-transfected HEI-OC1 cells (inner ear organ of a Corti-derived cell line) in the presence and absence of Dox. Consistent with the working hypothesis presented here, a significant increase in the DNA content (corresponding to an increase in cell number) was observed in Dox-treated but not untreated (control) transfected HEI-OC1 cells (Figure 3A – 3C).
Following the in vitro confirmation of the transgene activity and function, a transgenic mouse model was generated. FISH, using a TetO-DN-CB-myc6-Rb1 digoxigenin (DIG)-horse radish peroxidase (HRP)/tyramine-biotin/avidin-Cy5-labeled probe, and G-banding of male mice splenocytes and ear fibroblasts were performed to confirm the transgene insertion in the transgenic mice genome. Among the five germline transmitting founders, line 14 showed a consistent transgene insertion within segment 10C3~D2 (Figure 4A – 4C). Mice from this line were used to establish the breeding colonies and generate experimental animals for further studies. To determine the optimum time for the Dox induction and TetO-DN-CB-myc6-Rb1 transgene activation, we divided the transgenic mice into three different groups, wherein Dox was administered in drinking water for variable lengths of time: Group 1 (3 days of treatment), Group 2 (7 days of treatment), and Group 3 (10 days of treatment). Upon completion of the treatment, changes in the RB1 protein expression were assessed by western blotting (Figure 5A – 5D). Because the DN and native RB1 proteins have similar molecular weights, they cannot be resolved from each other on a western blot. However, consistent with an initial increase in RB1 protein (due to the accumulation of DN-RB1 and endogenous proteins), there was an initial increase in total RB1 protein expression in the transgenic mouse cochleae compared to the control group (Figure 5A). Moreover, consistent with the inhibitory and proteolytic activity of the TetO-DN-CB-myc6-Rb1 transgene product, a quantifiable reduction in RB1 expression was observed in groups 2 and 3 compared to group 1 and control groups (Figure 5A – 5D). Of note, treatment longer than 10 days did not result in any further change in RB1 protein expression. Thus, 10 days of Dox treatment was considered optimal and used for further studies.
Because the rtTA and, consequently, TetO-DN-CB-myc6-Rb1 transgene activation are under the ubiquitous ROSA-CAG promoter, RB1 could be potentially inhibited in any tissue or cell where RB1is endogenously expressed (e.g., lungs, heart, retina). To test this premise and evaluate the transgene's tissue specificity, cochleae, lungs, heart, and eye biopsies were dissected from TetO-DN-CB-myc6-Rb1/ROSA-CAG-rtTA, and control mice (not carrying the ROSA-CAG-rtTA transgene) were assessed for RB1 expression (Figure 6A – 6C). Regardless of the tissue analyzed, a significant reduction in RB1 protein was observed in TetO-DN-CB-myc6-Rb1/ROSA-CAG-rtTA but not in the control group (Figure 6A). In sharp contrast, qRT-PCR analyses in the eye, heart, and cochleae of Dox-treated TetO-DN-CB-myc6-Rb1/ROSA-CAG-rtTA and age-matched control mice showed a significant upregulation of the DN-CBRb transcript in the tissues of the former but not the latter mice (Figure 6C). Altogether, these results confirm the efficiency of the construct. An increase in transcript expression reflects the effective Dox-regulated transgene induction. Likewise, a reduction in protein expression is consistent with the routing and proteolytic degradation of the endogenous RB1.
Figure 1: Multi-step cloning of the CBRb and generation of the inducible TetO-DN-CB-myc6-Rb1/ROSA-CAG-rtTA. (A) This panel shows the cloning of the Rb1 fragment into the pCS2-CB-Myc6 vector. A 1583-bp Rb1 gene product was PCR amplified using the EcoRI+RB1243 forward and Xba+EcoRV+RB2826 reverse primers. The resulting Rb1 fragment was cloned between the EcoRI and Xbal restriction sites of the pCS2 vector containing the CB-Myc6 construct to generate the pCS2+CB-myc6+Rb1 vector. (B) The CB-myc6+Rb1 fragment was cloned into the pTetSplice vector between the SalI and EcoRV restriction sites. Please click here to view a larger version of this figure.
Figure 2: Effectiveness of the Dox-regulated transgene activation. (A) NIH3T3 cells do not usually express RB113. Confirming the efficient activation of the TetO-DN-CB-myc6-Rb1 construct, a western blot analysis with the anti-RB1 antibody revealed a robust RB1 expression in the presence of Dox (lanes 1 and 3), but not in its absence (lanes 2 and 4). (B) HEK293 cells, which endogenously express Rb114, were cotransfected with TetO-DN-CB-myc6-Rb1 and the pCMV-Tet3G transactivator vector. In the absence of Dox (lane 1), a positive RB1 expression was observed. The addition of Dox to the system caused the TetO-DN-CB-myc6-Rb1 activation and RB1 downregulation (lane 2). The RB1 expression was resumed 24 h after Dox was removed from the media (lane 3). C = control, untransfected HEK293 cells not treated with Dox. This is an adaptation from a figure originally published in the journal Frontiers in Cellular Neuroscience2. Its reproduction agrees with Frontiers' policy on authors' copyright retention. Please click here to view a larger version of this figure.
Figure 3: Dox-mediated DN-CBRb transgene activation increases cell proliferation. (A) HEI-OC1 cells cotransfected with purified TetO-DN-CB-myc6-Rb1, and the pCMV-Tet3G vectors were cultured in the absence (−) or presence (+) of Dox. Cell proliferation was determined 48 h after the transfection using a proliferation assay. The percentage change in proliferation was calculated using a change in fluorescence values with untransfected cells as a control. A modest but significant increase in cell number was observed in the transfected cells, following Dox treatment. In contrast, no significant changes were observed between transfected HEI-OC1 cells not treated with (−) Dox and the untransfected control. (B) HEI-OC1 cells untransfected or (C) cotransfected with purified TetO-DN-CB-myc6-Rb1 and the pCMV-Tet3G vectors cultured in the presence (+) of Dox were labeled with Ki-67 (red), Phalloidin (green), and DAPI (blue). * P < 0.05. Scale bar = 10 µm. This is an adaptation from a figure originally published in the journal Frontiers in Cellular Neuroscience2. Its reproduction agrees with Frontiers' policy on authors' copyright retention. Please click here to view a larger version of this figure.
Figure 4: Fluorescent in situ hybridization (FISH) confirmation of the genomic insertion of the TetO-DN-CB-myc6-Rb1 transgene. A pCS2-CBRb (digoxigenin probe/anti-DIG-HRP/tyramide-biotin/avidin-Cy5, in red) test probe was hybridized to splenocytes and ear fibroblast cell metaphase to see if the probe signal could be detected or not with a one-copy target insert size of 2.5 kb. The pCS2-CBRb test probe hybridized to one chromosome 10 with bright, doublet probe signals that showed the insertion of the TetO-DN-CB-myc6-Rb1 transgene within the segment 10C3-D2. The RP23-267G24 (Spectrum Green) control probe hybridized to chromosome 10 at band 10A1 as expected and confirmed that the CBRb DNA of interest inserted into chromosome 10. (A) This panel shows the G-band metaphase. (B) This panel shows the tyramide signal amplification (TSA) FISH image from the same metaphase as shown in panel A. (C) This panel shows composite images of chromosome 10 showing (1) G-banding, (2) TSA FISH, and (3) TSA FISH with inverted DAPI banding. Red = pCS2-CBRb probe; blue = DAPI banding; green = RP23-267G24 control probe. Scale bar = 10 µm. Please click here to view a larger version of this figure.
Figure 5: DN-CBRb transgene activation in the inner ear of postnatal (P) 36 TetO-DN-CB-myc6-Rb1/ROSA-CAG-rtTA+ (CBRb+) and ROSA-CAG-rtTA+ (CBRb−) mice after 3 (group 1), 7 (group 2), and 10 (group 3) days of Dox treatment. (A–C) Anti-RB1, which reacts with both hyperphosphorylated and hypophosphorylated forms of RB1, as well as anti-c-myc antibodies were used for detection. Densitometric analysis was done using ImageJ software. The corresponding values obtained were normalized to the negative control CBRb− (-) and then to β-actin. The relative RB1 expression levels are shown underneath each blot. (D) The graphic representation of normalized RB1 expression levels plotted against the different treatments highlights a consistently lower RB1 detection in CBRb+ (+) samples. Each lane on the western blot gel and each column on the graphic correspond to a different individual. * P < 0.05.This figure was originally published in the journal Frontiers in Cellular Neuroscience2. Its reproduction agrees with Frontiers' policy on authors' copyright retention. Please click here to view a larger version of this figure.
Figure 6: Spatial analyses of the TetO-DN-CB-myc6-Rb1/ROSA-CAG-rtTA transgene activation in P18 TetO-DN-CB-myc6-Rb1/ROSA-CAG-rtTA+ (+) and DN-CBRb+/ROSA-CAG-rtTA− negative control (-) mice heart, eye, lungs, and cochlea. (A)Confirming the efficiency of Dox-mediated transgene activation, the expression of the endogenous RB1 was downregulated in the CBRb+/ROSA-CAG-rtTA+ tissues but not in the negative control mice tissues. Densitometric analysis was performed as described in Figure 5. The relative RB1 expression levels are shown underneath each blot. (B) This panel shows a graphic representation of normalized RB1 expression levels plotted against the different tissues. An interindividual variation on endogenous RB1 levels may explain differences in individual responses to transgene activation and RB1 downregulation. (C) RT-PCR analyses in eye, heart, and cochleae revealed a significant upregulation of the TetO-DN-CB-myc6-Rb1/ROSA-CAG-rtTA transcript in Dox-treated TetO-DN-CB-myc6-Rb1/ROSA-CAG-rtTA+ tissues, but not in the DN-CBRb+/ROSA-CAG-rtTA− negative control group. CBRb+/rtTA+ = TetO-DN-CB-myc6-Rb1/ROSA-CAG-rtTA+; CBRb−/rtTA+ = ROSA-CAG-rtTA+; * P < 0.05. This figure was originally published in the journal Frontiers in Cellular Neuroscience2. Its reproduction agrees with Frontiers' policy on authors' copyright retention. Please click here to view a larger version of this figure.
Table 1: PCR condition used for checking the CB-Rb1 fusion region.
To circumvent the limitations associated with traditional transgenic strategies, we sought to generate a mouse model in which an endogenous POI can be conditionally inactivated by overexpressing a DN mutant form of it in a spatiotemporal manner. To abolish the function of endogenous POIs, several options have been proposed15,16,17. We have modified an earlier genetic strategy1 by combining the Dox-dependent transcriptional system to a straightforward strategy employing a fusion of the lysosomal protease CB to generate a mutant peptide whose expression affects the expression of the endogenous POI2. Most importantly, this technique requires no prior knowledge of the pathway associated with the POI. The current strategy to DN protein inhibition demonstrates that the lysosomal localization signal on the CBRb fusion gene diverts the entire RB-interacting complex toward lysosome2,3. Once inside lysosome, proteolytic processing of these proteins is initiated, leading to their degradation3. The intrinsic property of the CB-fused protein, associated with the reversible inducibility of the TetO system, makes this a useful alternative to traditional transgenic strategies (e.g., complete gene knockout, conditional deletion), particularly when the complete deletion of the gene of interest is not desirable.
We initially focused the research on the RB1 protein. DN mutations are most easily described in proteins that function as a dimer or multimers. To date, there is no evidence of a direct physical interaction between RB1 molecules. Nonetheless, the inherent nature of its activity allows for the presence of multiple RB1 molecules in the same complex at a given time. For example, the binding of hypophosphorylated RB1 to the E2F1-DP heterodimer provides an additional binding site, which is normally occupied by histone deacetylase (HDAC)18,19,20. On the other hand, HDAC1 physically interacts with RB1 and this complex, in turn, binds to the E2F1-DP-RB1 heterotrimer, thus providing additional transcription repression18. As per this approach, if at least one of the RB1 molecules in the group is a DN mutant, it will prevent the complex from repressing transcription, while it reduces the levels of endogenous RB1, thus eliciting an RB1-null phenotype. Here, endogenous RB1 inhibition was observed 10 days after the administration of Dox in drinking water. The optimal dose for Dox induction may, however, need to be empirically determined for each system. Moreover, since most of the Rb1 gene sequence was used on the construct makeup, it is possible that even in the absence of endogenous RB1, the mutant RB1 can interact with and elicit the DN inhibition of any of the RB1's binding partners. This premise can be tested by assessing the expression level of known RB1-binding molecules.
Much-needed, finely regulated temporal and reversible protein inactivation will provide the basis for the development of a wide variety of studies in an even wider number of research fields searching to shed light on the complex biochemical mechanisms underlying the various aspects of gene and proteinactivity. Depending on the POI, understanding its molecular complexity is likely to improve researchers' ability to design successful therapeutic strategies. Increased transgene specificity can be achieved by breeding the DN mouse to tissue-specific promoters driving either tTA or rtTA lines.
The authors have nothing to disclose.
The pCS2+CB-Myc6 vector was a gift from Marshall Horwitz (University of Washington, Seattle, WA, USA). The HEI-OC1 cells were kindly provided by Fedrico Kalinec (David Geffen School of Medicine, UCLA, Los Angeles, CA, USA). Technical support was provided by the UNMC Mouse Genome Engineering Core (C.B. Gurumurthy, Don Harms, Rolen Quadros) and the Creighton University Integrated Biomedical Imaging Facility (Richard Hallworth, John Billheimer). The UNMC Mouse Genome Engineering was supported by an Institutional Development Award (IDea) from the NIH/NIGMS, grant number P20 GM103471. The Integrated Biomedical Imaging Facility was supported by the Creighton University School of Medicine and grants GM103427 and GM110768 from the NIH/NIGMS. The facility was constructed with support from grants from the National Center for Research Resources (RR016469) and the NIGMS (GM103427). The mouse lines generated in this study were maintained at Creighton University’s Animal Resource Facility, whose infrastructure was improved through a grant by NIH/NCRR G20RR024001. This work received past support through an NIH/NCRR 5P20RR018788-/NIH/NIGMS 8P20GM103471 COBRE grant (to Shelley D. Smith), NIH/ORIP R21OD019745-01A1 (S.M.R.-S.), and an emerging research grant from the Hearing Health Foundation (to S. Tarang). The content of this research is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Dulbecco's Modified Eagle's Medium, DMEM | GIBCO-BRL | 11965-084 | |
Minimum Essential Medium Eagle, MEME | Sigma | M8042 | |
Fetal bovine serum | Sigma | F2442 | |
Lipofectamine | DharmaFECT | T-2010-03 | |
Sal I | Roche | 11745622 | |
EcoRV-HF | New England BioLabs | R3195S | |
NotI | Roche | 13090730 | |
CaspaTag | Millipore | APT523 | |
DAPI | Sigma | D9542 | |
Staurosporine | Sigma | S4400 | |
CyQuant NF cell proliferation kit | Invitrogen | C35007 | |
Retinoblastoma 1 antibody | Abcam | Ab6075 | |
c-Myc antibody | Sigma | M5546 | |
b-actin | Sigma | A5316 | |
Ki-67 | Thermofisher scientific | MA5-14520 | |
Phallodin | Thermofisher scientific | A12379 | |
Fluorescence microplate reader | FLUOstar OPTIMA, BMG Labtech | ||
Epifluorescence microscope | NikonEclipse80i | ||
The TetO-DN-CB-myc6-Rb1 (DN-CBRb) mouse line is available from the Jackson Laboratory as JAX#032011. |