This manuscript describes a simple and reproducible protocol for isolation of intracerebral arterioles (a group of blood vessels encompassing parenchymal arterioles, penetrating arterioles and pre-capillary arterioles) from mice, to be used in pressure myography, immunofluorescence, biochemistry, and molecular studies.
Intracerebral parenchymal arterioles (PAs), which include parenchymal arterioles, penetrating arterioles and pre-capillary arterioles, are high resistance blood vessels branching out from pial arteries and arterioles and diving into the brain parenchyma. Individual PA perfuse a discrete cylindrical territory of the parenchyma and the neurons contained within. These arterioles are a central player in the regulation of cerebral blood flow both globally (cerebrovascular autoregulation) and locally (functional hyperemia). PAs are part of the neurovascular unit, a structure that matches regional blood flow to metabolic activity within the brain and also includes neurons, interneurons, and astrocytes. Perfusion through PAs is directly linked to the activity of neurons in that particular territory and increases in neuronal metabolism lead to an augmentation in local perfusion caused by dilation of the feed PA. Regulation of PAs differs from that of better-characterized pial arteries. Pressure-induced vasoconstriction is greater in PAs and vasodilatory mechanisms vary. In addition, PAs do not receive extrinsic innervation from perivascular nerves — innervation is intrinsic and indirect in nature through contact with astrocytic endfeet. Thus, data regarding contractile regulation accumulated by studies using pial arteries does not directly translate to understanding PA function. Further, it remains undetermined how pathological states, such as hypertension and diabetes, affect PA structure and reactivity. This knowledge gap is in part a consequence of the technical difficulties pertaining to PA isolation and cannulation. In this manuscript we present a protocol for isolation and cannulation of rodent PAs. Further, we show examples of experiments that can be performed with these arterioles, including agonist-induced constriction and myogenic reactivity. Although the focus of this manuscript is on PA cannulation and pressure myography, isolated PAs can also be used for biochemical, biophysical, molecular, and imaging studies.
The cerebral circulation is uniquely organized to support the metabolic demands of central neurons, cells that have limited energy stores and are consequently highly sensitive to changes in oxygen pressure and supply of necessary nutrients. As particular neuronal subpopulations becomes active when specific tasks are performed, the vasculature promotes a highly localized increase in perfusion to prevent local hypoxia and depletion of nutrients 1. This is a form of functional hyperemia known as neurovascular coupling, and is dependent on the proper operation of the neurovascular unit, composed of active neurons, astrocytes, and cerebral arteries 2. Intracerebral parenchymal arterioles, a group of blood vessels encompassing parenchymal, penetrating and pre-capillary arterioles, are centrally important for this response and it is then critical to study them individually in order to investigate neurovascular coupling 3.
Parenchymal arterioles are small (20 – 70 µm internal diameter) high-resistance blood vessels that perfuse distinct neuronal populations within the brain. Branching out from pial arteries on the surface, parenchymal arterioles penetrate into the brain parenchyma at a nearly 90ᵒ angle to feed the subsurface microcirculation (Figure 1). These arterioles play a critical role in maintaining appropriate perfusion pressure as they are the most distal smooth muscle-containing vessels protecting the capillaries. In contrast to the surface pial circulation, parenchymal arterioles lack collateral branches and anastomoses, and consequently are "bottlenecks" of the cerebral circulation 4. As a result, dysfunction of parenchymal arterioles contributes to the development of cerebrovascular diseases such as vascular cognitive impairment and small ischemic strokes (also known as silent or lacunar strokes). Studies indicate that parenchymal arterioles dysfunction can be induced by essential hypertension 5, chronic stress 6, and is an early event in small vessel disease genetic mouse model 7. Further, experimentally-induced occlusion of single penetrating arterioles in rats is sufficient to cause small ischemic strokes that are cylindrical in shape, similar those observed in older humans 8.
In addition to these anatomical distinctions, mechanisms regulating contractile function differ between pial arteries and parenchymal arterioles. Myogenic vasoconstriction is greater in parenchymal arterioles 9, possibly because of the lack of extrinsic innervation 10, distinct modes of mechanotransduction 11, and differences in intracellular Ca2+ signaling 12,13 in vascular smooth muscle cells. Evidence suggests that endothelium-dependent vasodilator mechanisms also differ between these vascular segments, with parenchymal arteries exhibiting greater reliance on mechanisms involving Ca2+-activated K+ channels and electrotonic communication within the vascular wall compared with diffusible factors such as nitric oxide and prostacyclins 14. Therefore, data gathered in experiments using pial arteries may not necessarily apply to parenchymal arterioles, leaving a gap in our knowledge of local control of cerebral perfusion.
Despite their importance, parenchymal arterioles are vastly under-studied, primarily due to the technical challenges with isolation and mounting for ex vivo study. In this manuscript we describe a methodology to isolate and cannulate cerebral parenchymal arterioles, which can be used for pressure myography, or to isolate tissue for immunolabeling, electrophysiology, molecular biology, and biochemical analysis.
1. Cannula and Chamber Preparation
2. Isolation of Parenchymal Arterioles
3. Pressure Myography
4. Example Pressure Myography Experiments: Agonist-induced Constriction and Myogenic Reactivity
Figure 5A shows a representative constriction of mouse PAs to 60 mM KCl aCSF to evaluate the integrity of the preparation. PAs should constrict between 15 – 30% in the presence of 60 mM KCl. If the constriction is below 15%, discard the PA and cannulate another one, as it suggests that the arteriole was damaged during the isolation and cannulation process.
Figure 5B illustrates PA constriction to increasing concentrations of the thromboxane A2 analogue U-46619 (10 pM to 1 µM) into the superfusing bath. The constriction was observed as a reduction in the lumen diameter after incubation with each concentration. The PA was allowed to equilibrate at each concentration for 10 minutes. These data can be analyzed and presented as a change in diameter (ΔDiameter) or as a % vasoconstriction to KCl, which normalizes the change in diameter by the maximum constriction to 60 mM KCl.
Figure 6 shows a representative tracing of the lumen diameter of a PA in a myogenic reactivity experiment. Stepwise increases in intraluminal pressure causes a graded constriction of PAs in the presence of 1.8 mM extracellular Ca2+ (Figure 6, lower tracing). Incubation of the same PA with aCSF without Ca2+ and supplemented with 10 µM Diltiazem + 2 mM EGTA abolishes myogenic tone generation, and the lumen diameter of the PA increases according to intraluminal pressure (Figure 5, upper tracing), which is the passive lumen diameter of the arteriole.
Figure 1: Schematic of Parenchymal Arterioles. PAs branch out of surface pial arteries and dive into the underlying brain parenchyma. Each PA perfuses a small neuronal population within its columnar territory (highlighted regions). Please click here to view a larger version of this figure.
Figure 2: Isolation of Mouse Cerebral PAs. A) Image of the brain with the ventral surface facing upwards showing the Circle of Willis (arrow 1) and the MCA branching out from it (arrow 2). B) Image of the MCA with the underlying brain tissue. The arrow points to the most proximal region of the MCA from the Circle of Willis. C) PAs branching out of the MCA (arrows). Bar = 100 µm. Please click here to view a larger version of this figure.
Figure 3: Cannulation of Isolated Mouse PAs. A) Image of a PA cannulated but not yet tied with the sutures. This image illustrates the length of the PA to be inserted on the cannula before closing it with the sutures. B) The PA is now closed on the cannula with 2 sutures to guarantee that it will not slide off the cannula after pressurization. C) Image of a cannulated, pressurized mouse PA in a blind-sac experimental configuration. Bar = 50 µm. Please click here to view a larger version of this figure.
Figure 4: Equipment Used in Our Laboratory for PA Experiments. A) Dissection microscope with light source. B) Temperature controller. C) Peristaltic pump for bath superfusion of aCSF. D) Pressure Servo Control, Living Systems Instrumentation. E) Video Dimension Analyzer (bottom right), monitor (upper right) and Video Edge Detection system loaded on a laptop (left). F) Small vessel chamber (linear alignment chamber). Please click here to view a larger version of this figure.
Figure 5: Constriction of PAs to KCl-induced Depolarization and the Thromboxane A2 Analogue U46619. A) Representative constriction of mouse PAs to 60 mM KCl aCSF to evaluate the integrity of the preparation. PAs should constrict between 15 – 30% in the presence of 60 mM KCl. B) U46619 induced constriction of PAs; as observed in the tracing, U46619 causes a concentration-dependent constriction of PAs, observed as a reduction in the lumen diameter after incubation with each concentration. Please click here to view a larger version of this figure.
Figure 6: Myogenic Reactivity of PAs. Stepwise increases in intraluminal pressure causes a graded constriction of PAs in the presence of 1.8 mM extracellular Ca2+ (lower tracing). This pressure-induced constriction is characteristic of resistance arterioles. Incubation of the same PA with aCSF without 1.8 mM Ca2+ and supplemented with 10 µM Diltiazem + 2 mM EGTA abolishes myogenic tone generation, and the lumen diameter of the PA increases according to intraluminal pressure (upper tracing), which is the passive lumen diameter of the arteriole. Please click here to view a larger version of this figure.
Cerebral parenchymal arterioles are high resistance arterioles with few anastomoses and branches that perfuse distinct neuronal populations. These specialized blood vessels are central players in cerebrovascular autoregulation and neurovascular coupling through astrocyte-mediated vasodilation 1. The importance of these specialized blood vessels in cerebral vascular disease has been known for approximately 50 years, when the pioneering work of Dr. Miller Fisher described structural alterations in parenchymal arterioles within the territories of lacunar infarcts in the brains of hypertensive patients post-mortem16. These alterations, coupled to functional impairment, can cause hypoperfusion of the deep white matter, a major risk factor for development of vascular-related dementias 17. Parenchymal arterioles are functionally distinct from large intracranial and pial arteries as well as surface arterioles, thus accumulated data using these members of the cerebrovascular tree may not be easily extrapolated to the parenchymal microcirculation. Despite their clear importance in maintaining proper brain homeostasis, studies focusing on the physiology and functional responses of these arterioles have been scarce until recent years, primarily due to technical difficulties associated with isolation and manipulation.
In the present manuscript we describe a simple and reproducible technique for isolation and cannulation of parenchymal arterioles for pressure myography studies, molecular analysis, or the preparation of native smooth muscle or endothelial cells. Moreover, we present data on the use of this technique to investigate myogenic regulation, constrictor, and dilatory mechanisms in parenchymal arterioles. We observe that these vessels are myogenically active, generating spontaneous myogenic tone when intraluminal pressure is maintained at a constant level, as well as changing its myogenic status facing changes in intraluminal pressure, a phenomena well-described for resistance arteries called myogenic reactivity 18. Myogenic reactivity is a key factor in regulating perfusion pressure within the brain, keeping it constant facing fluctuations in systemic arterial pressure, thus preventing loss of perfusion at low pressures, or vasogenic edema at higher pressures 18. In addition, we show that these arterioles respond to vasoactive substances, such as endothelin-1, an important endogenous vasoconstrictor produced by endothelial cells. A major limitation of the preparation described here is that by isolating the parenchymal arterioles vital components of the neurovascular unit are lost and functional hyperemic responses cannot be studied. Other preparations, such as brain slice, maintain the structure of the intact neurovascular unit and are more appropriate to study astrocytic control of cerebral arteriolar diameter 19. However, in the brain slice preparation, parenchymal arterioles are not pressurized and exogenous administration of receptor-dependent vasoconstrictor agents is needed to mimic basal tone in order to study vasodilatory responses. Pressure myography and the brain slice preparation should be consider complementary for the study of the cerebral microcirculation.
The protocol described here was adapted from a preparation first described by Dacey and Duling in 198220, and altered by Coyne et al.21. The major difference lies in the cannulation technique used: while Dacey and Duling and Coyne et al. used two different sets of pipettes, a holding external pipette and an intraluminal cannulation pipette, we use only the intraluminal pipette and manually slide the PA into the pipette. This technique has been recently used to perform studies in rat PAs after cerebral ischemia — reperfusion injury 22, PAs from chronically hypertensive rats 5, among others. In mice, we utilized this technique to assess Ca2+ signals in pressurized PA smooth muscle cells under physiological conditions and acidosis by coupling PA cannulation to laser scanning confocal microscopy to assess Ca2+ waves and sparks in smooth muscle cells 13. We also tested several neurovascular coupling agents 3 and demonstrated, using pharmacological tools in conjunction with membrane potential recordings, that cerebrospecific up-regulation of voltage-gated potassium channels KV1 causes a channelopathy-like defect in small vessel disease genetic model 7. These examples illustrate the viability of this preparation to answer different research questions.
It is important to highlight that isolation of cerebral PAs from the brain tissue is the most critical step, as the ease of cannulation will depend on the number and length of PAs isolated. It may take a few trials to optimize the isolation. Further, the learning curve for cannulation can be long and frustrating, and initial success rates may be as low as 50%. However, once mastered, the reproducibility and throughput of this technique is high, and many experiments can be performed in one day.
In summary, the present manuscript describes a technique for isolation and cannulation of cerebral parenchymal arterioles. Such preparation isolated the vascular component of the neurovascular unit, maintaining intact responses of pressurized arterioles. Studies using isolated PAs will provide valuable insight into the cerebral parenchymal circulation, in both physiological and pathological conditions.
The authors have nothing to disclose.
Funded by NHLBI R01HL091905 (SE), the United Leukodystrophy Foundation CADASIL research grant (FD) and AHA 15POST247200 (PWP). The authors would like to thank Samantha P. Ahchay for providing the image on Figure 1, and Dr. Gerry Herrera, Ph.D., for providing critical comments on the manuscript.
artificial Cerebrospinal Fluid | |||
NaCl | Fisher Scientific | S-640 | |
KCl | Fisher Scientific | P217 | |
MgCl Anhydrous | Sigma-Aldrich | M-8266 | |
NaHCO3 | Fisher Scientific | S233 | |
NaH2PO4 | Sigma-Aldrich | S9638 | |
D-(+)-Glucose | Sigma-Aldrich | G2870 | |
CaCl2 | Sigma-Aldrich | C4901 | |
Bovine Serum Albumin | Sigma-Aldrich | A9647 | |
Name | Company | Catalog Number | コメント |
Isolation/ Cannulation | |||
Stereo Microscope | Olympus | SZX7 | |
Super Fine Forceps | Fine Science Tools | 11252-00 | |
Vannas Spring Scissors | Fine Science Tools | 15000-00 | |
Wiretrol 50 μL | VWR Scientific | 5-000-1050 | |
0.2 μm Sterile Syringe Filter | VWR Scientific | 28145-477 | |
Micropipette Puller | Sutter Instruments | P-97 | |
Borosilicate Glass O.D.: 1.2 mm, I.D.: 0.68 mm | Sutter Instruments | B120-69-10 | |
Dark Green Nylon Thread | Living Systems Instrumentation | THR-G | |
Linear Alignment Single Vessel Chamber | Living Systems Instrumentation | CH-1-LIN | |
Pressure Servo Controller with Peristaltic Pump | Living Systems Instrumentation | PS-200 | |
Video Dimension Analyzer | Living Systems Instrumentation | VDA-10 | |
Four Channel Recorder with LabScribe 3 Recording and Analysis Software | Living Systems Instrumentation | DAQ-IWORX-404 | |
Heating Unit | Warner Instruments | 64-0102 | |
Automatic Temperature Controller | Warner Instruments | TC-324B |