18.4:

Electrophilic Aromatic Substitution: Overview

JoVE Core
有機化学
このコンテンツを視聴するには、JoVE 購読が必要です。  サインイン又は無料トライアルを申し込む。
JoVE Core 有機化学
Electrophilic Aromatic Substitution: Overview

6,186 Views

01:16 min

April 30, 2023

In an electrophilic aromatic substitution reaction, an electrophile substitutes for a hydrogen of an aromatic compound.

Figure1

Many functional groups can be added to aromatic compounds by these reactions. All electrophilic aromatic substitution reactions occur via a two-step mechanism. In the first step, the π system of the aromatic ring reacts with an electrophile, forming an arenium ion, which is resonance-stabilized. It is often referred to as a sigma complex because the electrophile forms a sigma bond with the aromatic ring.

Figure2

In the second step, deprotonation of the arenium ion restores aromaticity and gives the substituted product.

Figure3

The free energy diagram shows that the first step is relatively slow and endergonic because the ring loses its aromatic stability. This step is therefore the rate-determining step because of its higher free energy of activation. The second step is fast and exergonic because it restores the stability enhancing aromaticity. It has a lower free energy of activation. The overall electrophilic aromatic substitutions are exergonic reactions.