18.4:

Electrophilic Aromatic Substitution: Overview

JoVE 핵심
Organic Chemistry
JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다.  전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
JoVE 핵심 Organic Chemistry
Electrophilic Aromatic Substitution: Overview

6,186 Views

01:16 min

April 30, 2023

In an electrophilic aromatic substitution reaction, an electrophile substitutes for a hydrogen of an aromatic compound.

Figure1

Many functional groups can be added to aromatic compounds by these reactions. All electrophilic aromatic substitution reactions occur via a two-step mechanism. In the first step, the π system of the aromatic ring reacts with an electrophile, forming an arenium ion, which is resonance-stabilized. It is often referred to as a sigma complex because the electrophile forms a sigma bond with the aromatic ring.

Figure2

In the second step, deprotonation of the arenium ion restores aromaticity and gives the substituted product.

Figure3

The free energy diagram shows that the first step is relatively slow and endergonic because the ring loses its aromatic stability. This step is therefore the rate-determining step because of its higher free energy of activation. The second step is fast and exergonic because it restores the stability enhancing aromaticity. It has a lower free energy of activation. The overall electrophilic aromatic substitutions are exergonic reactions.