Source: Fixman, B. B., et al. Modified Roller Tube Method for Precisely Localized and Repetitive Intermittent Imaging During Long-term Culture of Brain Slices in an Enclosed System. J. Vis. Exp. (2017).
This video demonstrates a modified roller tube method for the long-term culturing of brain slices from a rodent model. First, the brain slices are attached to coverslips. Then, flat-sided roller tubes with a hole on the flat side are taken, and the coverslips are positioned on the hole using adhesive discs. Finally, a nutrient medium and a carbon dioxide and air mixture are added to the tube, and the tubes are incubated with a rolling motion.
All procedures involving sample collection have been performed in accordance with the institute's IRB guidelines.
NOTE: The protocol below describes the preparation and culture method for the long-term incubation and intermittent imaging of hippocampal slices. A single hippocampal slice is attached to a specially prepared photoetched coverslip using a plasma clot, and then the coverslips are sealed onto the flat side of a drilled-out roller tube, which is maintained in a roller incubator.
1. Preparation of Roller Tube Rack
2. Preparation of Roller Tubes and Coverslips
3. Hippocampal Slice Preparation
4. Plating Slices
Figure 1: Preparation of roller tube rack. (A) Template for marking hole positions for drilling out the 15 cm tissue culture dish bottoms. If the figure is printed to the size of the scale bar shown, it can be cut out and used for marking the positions on a 15 cm culture dish for drilling the holes shown. (B) Completed roller tube rack with two tubes inserted. Each rack is numbered on a sticker easily visible on the top of the rack.
Figure 2: Preparation of the roller culture tubes. (A) Front view of the roller tube inserted in a jig on a drill press for drilling out the 6 mm hole in the tube. Dashed line shows the position of the flat sided roller tube in the jig. (B) End view of the jig with the tube inserted and drill bit aligned over hole. (C) Top view of the hole in the jig for drilling out roller tubes with a 6 mm drill bit. White arrow shows the position of the cut-off nail inserted as a stop for positioning the tubes, and black double lines are for bit alignment. (D) Spring clips (black arrow) installed on the jig bottom to securely hold it in position when drilling tubes. (E) After drilling out the hole, the edges are smoothed with a deburring tool and grooves are cut on the inner side of the hole (inset shows the hole viewed through a dissection microscope) to enhance medium draining from the hole during tube rotation. (F) Culture tube with the hole aligned to a hole in the silicone rubber adhesive, to which the coverslip will be attached.
Figure 3: Preparation of hippocampal brain slices. Photos taken with a dissection microscope showing: (A) intact mouse brain. Position of cuts to remove forebrain and cerebellum are shown as blue dashed lines. (B) after removal of forebrain and cerebellum. (C) piece of brain from B is flipped 90° with posterior region (toward the cerebellum) facing up. Positioning the piece next to the side of the dish helps with the removal of the midbrain (blue dashed circle) which can be teased away from the remaining hippocampus, thalamus, and hypothalamus. Two cuts with the forceps (blue dashed lines) allow the remaining piece containing the hippocampus from both hemispheres to be spread flat. (D) The flattened brain piece showing the blood vessel running along the hippocampal fissure (blue arrow). This tissue is placed on plastic film and transferred to the tissue chopper for slicing in the direction of the dashed line. (E) Sliced tissue showing slightly more than half the hippocampus after being returned to GBSS/glucose. (F) Final dissection of the hippocampus and cleaning of the slices to remove non-hippocampal material. (G) Several floating slices after final clean-up. (H) Enlarged photo of a single slice for transfer to coverslip.
Figure 4: Plating and incubating slices. (A) A mouse hippocampal slice is removed from the culture dish on the tip of a spatula using the tip of forceps to help lift it free from the solution. (B) The slice is placed flat in the center of a photoetched and treated 12 mm coverslip on 2 µL of chicken plasma and another 2.5 µL of a 1:1 plasma/thrombin mixture is added to generate a clot. (C) After the clot is set (about 1-2 min), the covering is removed from the silicone rubber adhesive circle on a roller tube and the coverslip is positioned with the clot centered into the hole; then the coverslip is pressed in place with a thumb and held in position for about 1 min. (D) Add 0.8 mL of complete culture medium. (E) Roller tube holders inside of a large roller incubator with the front raised to tilt 5° to keep the medium at the bottom of the tubes.
The authors have nothing to disclose.
Bottoms from 15 cm culture dishes | VWR Scientific | 25384-326 | |
Phillips Head Machine Screws (#10-32) | Ace Hardware | 2.5" long and 3/16" in diameter | |
Flat Washers #10 | Ace Hardware | ||
Machine Screw Nuts (#10-32) | Ace Hardware | ||
Rubber Grommets | Ace Hardware | 5/16", thick; 5/8", hole diameter; 1.125", OD | |
Polyethylene tubing (5/16"; OD, 3/16"; ID) | Ace Hardware | Cut to 1.8" length | |
Lock Washer #10 | Ace Hardware | ||
Drill Press, 5 speed | Ace Hardware | ||
Nunclon Delta Flat-Sided Tubes | VWR | 62407-076 | |
Drill bits, 3 mm, 6 mm and 15 mm | Ace Hardware | Diablo freud brand | Drill bits for cutting plastic |
Drill bits for wood, 1.5 cm and 1 mm | Ace Hardware | ||
Wood file, 1/4" round | Ace Hardware | ||
Spring clips, 16 mm snap holder | Ace Hardware | ||
Swivel Head Deburring Tool, 5" | Ace Hardware | 26307 | |
Adhesive Silicone Sheet (Secure Seal) | Grace Bio-Labs | 666581 | 0.5 mm Thickness |
6 mm hole punch | Office Max | ||
12 mm hole punch | thepunchbunch.com | ||
70% Ethanol | |||
Phototeched Coverslips, 12 mm diameter | Bellco Glass, Inc. | ||
Bunsen Burner | |||
Absolute Ethanol | |||
Nanopure Water | |||
3-aminopropyltriethoxylane | Sigma-Aldrich | A3648 | |
Acetone | Sigma-Aldrich | 179124 | |
#5 Dumont Forceps | Fine Science Tools | 11251-30 | |
McIlwain Tissue Chopper | Ted Pella, Inc. | 10180 | |
Double Edge Razor Blades | Ted Pella, Inc. | 121-6 | |
Whatman Filter Paper | VWR | 28450-182 | Cut into 5.8 cm diameter circles |
Poly-chloro-trifluoro-ethylene (Aclar) | Ted Pella, Inc. | 10501-10 | Cut into 5.8 cm diameter circles |
#21 Surgical Blade | VWR Scientific | 25860-144 | |
#5 Dumont Forceps | Fine Science Tools | 11251-30 | |
Spatula, stainless with tapered end | VWR | 82027-518 | |
Gey's Balanced Salt Solution | Sigma-Aldrich | G9779 | |
Glucose | ThermoFisher Scientific | 15023-021 | 25% (w/v) Solution, 0.2 mm filter sterilized |
Chicken Plasma | Cocalico Biologicals | 30-0300-5L | Rehydrate in sterile water, centrifuge at 2500 x g 30 min at 4 °C, quick freeze aliquots in liquid nitrogen and store at -80 °C. |
Thrombin, Topical (Bovine) | Pfizer | Thrombin-JMI | Quick freeze aliquots in liquid nitrogen at 1,000 international units/mL in diluent provided and store at -80°C. Use at 250 units/ mL. |
Cell Roller System | Bellco Biotech | SciERA | |
Roller Incubator | Forma | Model 3956 |