Summary

传播<em> Homalodisca coagulata病毒01</em>通过<em> Homalodisca vitripennis</em>细胞培养

Published: September 25, 2014
doi:

Summary

在这里,我们提出了一个协议来传播Homalodisca vitripennis细胞和HoCV-1 体外 。培养基从HoCV-1阳性培养去除和RNA的提取,每24小时为168小时。细胞生存力进行定量通过台盼蓝染色法。整个病毒粒子中提取的后感染。提取的RNA进行定量通过qRT-PCR。

Abstract

玻翅神枪手(Homalodisca vitripennis)是整个美国西南部发现了一个非常vagile和杂食性昆虫。这些昆虫是Xylella难养(十难养)的主要载体木质部限细菌是葡萄皮尔斯病(PD)的致病因子。皮尔斯病是造成经济损失;因此,H vitripennis已成为病原体管理战略目标。认定为Homalodisca coagulata病毒01(HoCV-01)一个dicistrovirus已在阁下的死亡率增加有关vitripennis人群。由于宿主细胞需要HoCV-01的复制,细胞培养为目标的复制是后勤和生物农药生产经济价值的统一环境。在本研究中,对于H的大规模繁殖系统通过组织培养vitripennis细胞发达,Providing病毒复制的机制。 HoCV-01是从整个身体的昆虫中提取并用于接种培养的幽门vitripennis细胞在不同的水平。将培养基除去,每24小时为168小时,萃取,用定量RT-PCR分析的RNA。细胞用台盼蓝染色并计数用光学显微镜来量化细胞生存能力。全病毒颗粒中提取多达96小时感染后,为确定为总细胞培养崩溃发生之前的时间点。细胞也进行荧光染色,并用共聚焦显微镜研究上的F-肌动蛋白的附接和细胞核完整性病毒活性观看。本研究的结论是H。 vitripennis细胞能够被培养,并用于批量生产HoCV-01在一个合适的水平,使生产的生物农药。

Introduction

玻翅神枪手(Homalodisca vitripennis Germar 1821)已被确定为Xylella难养十难养 )的主要载体,小道消息(PD)的皮尔斯病的病原在北美1。昆虫种群的管理已经迅速成为研究的重点,以打击在加州和整个美国南部这个毁灭性的问题的葡萄种植业。属于家人正意义上说,单链RNA病毒Dicistroviridae,Homalodisca coagulata病毒01(HoCV-01)已经在野生H.确定vitripennis人口和证实会增加死亡率在这些人群2-4,同时降低昆虫的抗杀虫剂。

方法的发展,有效地后方感染H。 vitripennis在实验室环境到成年一直很困难,因为<eM>小时。 vitripennis有需要多种寄主植物5-8不同阶段的特定营养需求。特定设备是必需的,以后部活H. vitripennis在美国;因此,细胞培养物是更经济,可行的替代方案,以及用于HoCV-01检测和复制2,9日益重要。而基本的方法用于建立H的细胞培养vitripennis进行了描述,这些方法还没有被用于商业化生产的生物控制剂,如病毒2。

以下程序的总体目标是生产出高浓度HoCV-01适合于利用作为生物控制剂。病毒复制需要一个活细胞,这就是为什么成功的培育和优化H. vitripennis文化是产生病毒的盈利水平的进步至关重要。

Protocol

1,细胞培养注:由韦恩·亨特博士的实验室在美国农业部农业研究服务局(英尺皮尔斯,美国佛罗里达州)建立Homalodisca vitripennis细胞系用于启动一个实验室股混合细胞阶段,包括最初的成纤维细胞和单分子层组成。 在保持在20-24℃的温度范围为25 平方厘米培养瓶无菌的实验室环境,请执行以下步骤。 培育和利用H2G +叶蝉介质中,修饰WH2蜜蜂媒体…

Representative Results

细胞的附着和生长在小型和大型培养瓶在48小时通行看出,从原代培养和传代延续。成纤维细胞生长和发展也在此时间范围内观察到。当新种子培养瓶48小时前不安,有细胞附着可见的下降,导致生长缓慢的文化和时有时无的附件或增长的。细胞在约80%汇合的传球的一个星期内,并在10-14天( 图1)形成的单层。分别培养在本研究的开始即原代培养物,已存活30 +细胞的通道无任何形态…

Discussion

关于农业侵入物种的大量涌入上升的担忧引发了新的方法来对出现的害虫和病原体防御的需求增加。疾病预防和管理的重点包括病原载体的管理,是本研究的主要目标。经济学中生产这种类型的生物农药来管理病原载体的农业,因为在实际应用程序需要大量的广大地区,但以较低的成本12的决定起着至关重要的作用。利用细胞培养物的研究和开发的实践中已经变得越来越普遍,因此,本研…

Divulgations

The authors have nothing to disclose.

Acknowledgements

We would like to thank the Texas Pierce’s Disease Research and Education Program and USDA-APHIS for their funding support for this project. We would also like to thank Hema Kothari at the University of Texas Health Science Center at Tyler for her assistance with confocal microscopy.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Corning cell culture flasks Sigma Aldrich CLS430168 Surface area 25 cm2, canted neck, cap (plug seal)
Olympus DP30BW, IX2-SP, IX71 Olympus Inverted microscope and camera
Trypsin-EDTA solution Sigma Aldrich T4049 0.25%, sterile-filtered, BioReagent, suitable for cell culture, 2.5 g porcine trypsin and 0.2 g EDTA • 4Na per liter of Hanks′ Balanced Salt Solution with phenol red
Greiner CELLSTAR multiwell culture plates Sigma Aldrich M8937 48 wells (TC treated with lid)
DETCA  Sigma Aldrich 228680 Sodium diethyldithiocarbamate trihydrate
Corning bottle-top vacuum filter system Sigma Aldrich CLS431206 Cellulose acetate membrane, pore size 0.45 μm, membrane area 54.5 cm2, filter capacity 500 mL
Brij 52 Sigma Aldrich 388831 Polyethylene glycol hexadecyl ether
Phosphate buffer solution Sigma Aldrich P5244 Recieved as 100mM diluted to 10mM with sterile water
TRIzol LS  Life Technologies 10296-028
Agarose Sigma Aldrich A5304 For electrophoresis
Ethidium bromide Sigma Aldrich E7637 BioReagent, for molecular biology, powder
QIAquick Qiagen 28704
QuantiTect qRT-PCR kit  Qiagen 204243
4% paraformaldehyde  Sigma Aldrich P6148  Reagent grade, crystalline
PBS  Sigma Aldrich P5368 Phosphate buffered saline
Triton X-100  Sigma Aldrich X100
Bovine serum albumin (BSA) Sigma Aldrich A2153
Rhodamine red-conjugated phalloidin  Life Technologies R415 Rhodamine phalloidin is a high-affinity F-actin probe conjugated to the red-orange fluorescent dye, tetramethylrhodamine
DAPI  Sigma Aldrich D9542
ProLong Gold Antifade Reagent Life Technologies P36934
LSM510 Meta Confocal System  Carl Zeiss
LSM Zen 2007 Software Carl Zeiss
Grace’s Insect medium (supplemented, 1X) Sigma Aldrich G8142 H2G+ leafhopper medium component
L-histidine monohydrate Sigma Aldrich H8125 H2G+ leafhopper medium component
Medium 199 (10X) Sigma Aldrich M4530 H2G+ leafhopper medium component
Medium 1066 (1X) Sigma Aldrich C0422 H2G+ leafhopper medium component
Hank’s Balanced Salts (1X) Sigma Aldrich 51322C H2G+ leafhopper medium component
L-Glutamine (100X) Sigma Aldrich G3126 H2G+ leafhopper medium component
MEM, amino acid mix (50X) Sigma Aldrich 56419C H2G+ leafhopper medium component
1 M MgCl solution Sigma Aldrich M8266 H2G+ leafhopper medium component
Pen-Strep (w/ Glutamine) Sigma Aldrich G6784 H2G+ leafhopper medium component
Nystatin Sigma Aldrich N6261 H2G+ leafhopper medium component
Gentamycin Sigma Aldrich 46305 H2G+ leafhopper medium component
Dextrose Sigma Aldrich D9434 H2G+ leafhopper medium component
Fetal Bovine Serum Sigma Aldrich F2442 H2G+ leafhopper medium component

References

  1. Takiya, D. M., McKamey, S. H., Cavichioli, R. R. Validity of Homalodisca and of H. vitripennis as the Name for Glassy-winged Sharpshooter (Hemiptera: Cicadellidae: Cicadellinae). Ann. Entomol. Soc. Am. 99 (4), 648-655 (2006).
  2. Hunter, W. B., Katsar, C. S., Chaparro, J. X. Molecular analysis of capsid protein of Homalodisca coagulata Virus-1, a new leafhopper-infecting virus from the glassy-winged sharpshooter, Homalodisca coagulata. J. Insect Sci. 6 (28), 1-10 (2006).
  3. Hunnicutt, L. E., Hunter, W. B., Cave, R. D., Powell, C. A., Mozoruk, J. J. Genome sequence and molecular characterization of Homalodisca coagulata virus-1, a novel virus discovered in the glassy-winged sharpshooter (Hemiptera: Cicadellidae). Virology. 350 (1), 67-78 (2006).
  4. Hunnicutt, L. E., Mozoruk, J., Hunter, W. B., Crosslin, J. M., Cave, R. D., Powell, C. D. Prevalence and natural host range of Homalodisca coagulata virus-1 (HoCV-1). Virology. 153, 61-67 (2008).
  5. Jones, W. A., Setamou, M. Biology and Biometry of Sharpshooter Homalodisca coagulata (Homoptera) Cicadellidae) Reared on Cowpea. Ann. Entomol. Soc. Am. 98 (3), 322-328 (2005).
  6. Turner, W. F., Pollard, H. N. Life histories and behavior of five insect vectors of phony peach disease. US Dep. Agric. Tech. Bull. 1188, 1-32 (1959).
  7. Brodbeck, B. V., Andersen, P. C., Mizell, R. F. Utilization of primary nutrients by the polyphagous xylophage, Homalodisca coagulata, reared on single host species. Arch. Insect Biochem. Physiol. 32, 65-83 (1996).
  8. Brodbeck, B. V., Andersen, P. C., Mizell, R. F. Effects of total dietary nitrogen and nitrogen form on the development of xylophagous leafhoppers. Arch. Insect Biochem. Physiol. 42, 37-50 (1999).
  9. Kamita, S. G., Do, Z. N., Samra, A. I., Halger, J. R., Hammock, B. D. Characterization of Cell Lines Developed from the Glassy-winged Sharpshooter, Homalodisca coagulata (Hemiptera: Cicadellidae). In vitro Cell Dev.-An. 41, 149-153 (2005).
  10. Hunter, W. B. Medium for development of bee cell cultures (Apis mellifera: Hymenoptera: Apidae). In vitro Cell Dev.-An. 46 (2), 83-86 (2010).
  11. Bextine, B., Hunter, W., Marshall, P., Hail, D. Identification and whole extraction of Homalodisca coagulata-virus01. (HoCV-01) from Texas glassy-winged sharpshooter populations. , 9-12 (2009).
  12. Rhoades, D. J. Economics of baculovirus – insect cell production. Cytotechnology. 20, 291-297 (1996).
  13. Briske-Anderson, M. J., Finley, J. W., Newman, S. M. The influence of culture time and passage number on the morphological and physiological development of Caco-2 cells. P. Soc. Exp. Biol. Med. 214 (3), 248-257 (1997).
  14. Chin, L., et al. Deficiency Rescues the Adverse Effects of Telomere Loss and Cooperates with Telomere Dysfunction to Accelerate Carcinogenesis. Cell. 97 (4), 527-538 (1999).
  15. Counter, C. M., et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. Embo. J. 11, 1921-1929 (1992).
  16. Hayflick, L., Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell. Res. 25, 585-621 (1961).
  17. Goetz, I. E., Moklebust, R., Warren, C. J. Effects of some antibiotics on the growth of human diploid skin fibroblasts in cell culture. In Vitro. 15 (2), 114-119 (1979).
  18. Coriell, L. L., Fogh, J. .. Methods of prevention of bacterial, fungal, and other contaminations. Contamination in Tissue Culture. , 29-49 (1973).
  19. Hambor, J. E. Bioreactor Design and Bioprocess Controls for Industrialized Cell Processing. Bioprocess Tech. Bull. 10 (6), 22-33 (2012).
  20. Abbot, A., Cyranoski, D. Biology’s new dimension. Nature. 424, 870-872 (2003).

Play Video

Citer Cet Article
Biesbrock, A. M., Powell, C. M., Hunter, W. B., Bextine, B. R. Propagation of Homalodisca coagulata virus-01 via Homalodisca vitripennis Cell Culture. J. Vis. Exp. (91), e51953, doi:10.3791/51953 (2014).

View Video