Summary

用于可视化神经突在冷冻水合状态下使用低温电子断层扫描准备初级神经元

Published: February 12, 2014
doi:

Summary

以保留神经流程超微结构分析,我们描述了一种协议,用于在电子显微镜网格后用快速冷冻原代神经元的电镀,得到的样品悬浮在一层玻璃的冰。这些样本可以检查与一个低温电子显微镜可视化结构在纳米尺度。

Abstract

突起,无论是树突和轴突,是神经元细胞过程,使电脉冲的神经元之间的传导。定义突起的结构是如何理解这些过程动议,支持突触宣传材料和信号的关键。电子显微镜(EM)传统上被用来评估突起内的超微结构特征,但是,接触有机溶剂的脱水和树脂的嵌入过程中,可能会扭曲结构。一个重要的未满足的目标是有关程序,以便不被这种假象影响结构性评估的制定。在这里,我们已经建立了种植和速冻对整个电子显微镜网格其次是他们检查与低温电子断层扫描(冷冻ET)不同的主神经元的轴突详细的和可重复的协议。这种技术允许冷冻,水合突起在纳米级分辨率的三维可视化,便于ASSEssment他们的形态差异。我们的协议产生背根神经节(DRG)突起,和海马神经突在他们接近天然状态的可视化前所未有的看法。因此,这些方法为未来在正常的神经元和那些由神经系统疾病影响的突起研究奠定了基础。

Introduction

神经元建立复杂的电路必需的中枢和周围神经系统的通过阐述树突接收信息和轴突,往往是相当冗长的,与下游神经元进行通信的功能。神经突增生起到胚胎发育和神经细胞的分化和维持轴突的过程中的基础性作用支持神经系统的审慎的功能。神经炎过程还具有批判性的神经损伤和再生,以及神经系统疾患。神经元结构的研究是至关重要的了解双方的正常和病变的大脑。幸运的是,生理有关的神经元细胞培养系统存在,可以概括复杂和异构的细胞结构。基于坚实的实验平台,有效的可视化策略,使神经元形态的定性和定量分析的澄清是必要的。特别有用会是一个详细的方法,提供了用于可视化的神经突,既轴突和树突在纳米尺度一致的平台。

传统的电子显微镜需要脱水和树脂包埋过程中使用有机溶剂,可以从自己的真实状态引起扭曲的标本。迄今为止,在纳米尺度结构最大表征是基于较大的细胞或组织所承受这样苛刻的化学物质-从而限制的结果4,9,25解释。此外,对于电子束的穿透,切片所需的生物体或细胞的突起呈现的厚度大于1微米的12。最后,切片或磨碎的组织结果集合中的离散量特定的数据集,使突起的细长的特点繁琐的定义。即使冷冻电镜,其中切片冷冻水合的样品是可能的,该方法引入了压缩ARTIF使徒行传1。

近年来,研究人员已经学会了如何直接在EM电网和速冻它们在液态乙烷采用低温ET 8,10,18,23随后可视化轴突生长的海马神经元。然而,这些研究要么使用一个特制的装置10,23,或对产生足够薄玻璃冰常规可视化8,18的印迹步缺乏细节。例如,一项研究建议使用30-40秒,吸干了EM网格10,但是,这个值进行了优化不能用于一般用途,但具体是对于定做暴跌冷冻设备。使用一个特制的设备,而不是市售17保持湿度暴跌冻结的样品前可能构成障碍的广泛的可重复性。

虽然这些研究已经破土动工了冷冻ET可视化突起,我们已经迈出了一步,探讨AP冷冻的ET plicability各种神经元标本(海马及背根神经节神经元)的。此外,我们将讨论这两种最优和次优的结果,以及人们可以利用冷冻ET此类标本遇到潜在的文物。

定义一个详细的技术维护和在纳米尺度可视化整个轴突在接近本机的状态将加强开展超微结构研究的能力,更多的研究者。为此,我们使用市售设备来制备未定影的,未染色的神经元来可视化突起描述一种有效和详细的协议。这是迈向健康的详细轴突的超微结构,并奠定基础,了解什么是结构上的差异存在于神经系统疾病模型的重要的第一步。因为冷冻的ET能在纳米尺度解决在3-D未定影的,未染色的神经突的特点,该方法将使得能够作为永远脱颖而出定义神经炎架构12。

Protocol

1。准备菜肴与EM网格的镀初级神经元检查使用光学显微镜在至少25倍的放大倍率黄金EM网格多孔碳的完整性。确保碳孔> 98%不变。 电镀初级神经元,用本生灯火焰灭菌的EM网格和并行使其亲水性。使用镊子拿起EM网格的边缘,而不是中心网格区域。注意:切勿将点燃的本生灯无人值守,并且不使用手套或镊子塑料组件,同时执行这些步骤: 前点燃本生灯,设置空气和气体调?…

Representative Results

在此之前通过低温冷冻ET和成像,光学显微镜图像应采取的EM网格上的神经元生长。突起应清晰可见,但不与另一个显著重叠。在图3A中的着色方块表示被放大的显示在图3B中,其中,突起在网格的格子延伸更高倍率的区域。每个网格正方形是由支撑的神经元及其突起一个多孔碳片。这些漏洞是显而易见的在4K放大,这表明神经元的身体作为一个比较大的,黑暗的,电子致?…

Discussion

我们证明了大鼠胚胎神经元(背根神经节和海马)可以生长在金电子显微镜(EM)的网格,并冻结在玻璃冰足够薄,其轴突使用2-D冷冻电镜和3-D冷冻待成像ET。虽然海马神经元突起先前已使用冷冻ET 8,10,18,23成像,协议使用市售的设备一直缺乏足够详细的成功复制。此外,虽然他们的研究已经率先使用冷冻ET的可视化海马突起,我们的研究探讨低温ET的适用性,以不止一种类型的神经元标本?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项研究已经由美国国立卫生研究院资助(PN2EY016525和P41GM103832)的支持。二手烟是由来自WM凯克中心对墨西哥湾沿岸财团(美国国立卫生研究院批准号:T32EB009379)的跨学科生物科学训练的纳米生物学跨学科研究生培养方案的研究奖金支持。

SHS解剖,成长和陶瓷DRG和海马细胞;收集的冷冻电镜和背根神经节和海马轴突冷冻 – 经济数据,重建和颜色标注的​​倾斜系列。 MRG解剖和MNR的实验室提供的海马细胞。资深大律师协助的倾斜系列注释。二手烟是如何解剖和神经生长训练的CW。 SHS,​​WCM和厕所构思的实验。自蔓延高温合成制备的手稿与其他作者的输入。

这部影片的拍摄地在该中心为t的Biozentrum的细胞成像和NanoAnalytics(C-CINA)他巴塞尔大学。 C-CINA集成部的苏黎世联邦理工学院,位于巴塞尔,瑞士的生物系统科学与工程(D-BSSE)。

Materials

Dumont #7 Tweezers Electron Microscopy Sciences 72803-01 For handling EM grids
Glass bottom dishes MatTek Corp. P35G-1.5-10C For growing sample
Electron microscopy grids Quantifoil Holey Carbon, Au 200, R 2/2 For growing sample
Calcium-free filter paper Whatman 1541-055 For blotting sample
Large flat point long tweezers Excelta Corporation E003-000590, 25-SA For blotting sample
Vitrification device and tweezers FEI Vitrobot Mark III For freezing sample
Mini grid storage boxes Ted Pella, Inc. 160-40 For storing EM grids
Cryo transfer holder Gatan 626 Single Tilt Liquid Nitrogen Cryo Transfer Holder For imaging samples
Semi-automated tilt series acquisition software SerialEM http://bio3d.colorado.edu/SerialEM/ For imaging samples
Image processing software IMOD eTomo http://bio3d.colorado.edu/imod/ For image processing
Transmission electron microscope for cryoEM JEOL, Tokyo 200-kV JEM2100 LaB6 electron microscope For imaging samples
4k x 4k CCD camera Gatan N/A For imaging samples
3-D annotation software Visage Imaging GmbH Amira/Avizo For processing 3-D data
Software for digitally stitching 2-D images Adobe Adobe Photoshop For processing 2-D data
DMEM, High Glucose Invitrogen 11965-118 For hippocampal culture
Boric acid Sigma Aldrich B-0252 For hippocampal culture
Sodium tetraborate Sigma Aldrich B-9876 For hippocampal culture
Poly-L-lysine Sigma Aldrich P2636-500MG For hippocampal culture
Filter system Corning 430758 For hippocampal culture
Neurobasal medium Invitrogen 21103-049 For DRG culture
B-27 supplement Invitrogen 17504-044 For DRG culture
Penicillin/Streptomycin Invitrogen 15140-122 For DRG culture
Glutamax Invitrogen 35050-061 For DRG culture
Recombinant rat b-NGF R&D Systems 556-NG For DRG culture
Uridine Sigma U3003-5G For DRG culture
5'-Fluoro-2'-deoxyuridine Sigma F0503-100MG For DRG culture
Matrigel BD Biosciences 356234 For DRG culture

References

  1. Al-Amoudi, A., et al. Cryo-electron microscopy of vitreous sections. EMBO J. 23, 3583-3588 (2004).
  2. Benzing, W. C., Mufson, E. J., Armstrong, D. M. Alzheimer’s disease-like dystrophic neurites characteristically associated with senile plaques are not found within other neurodegenerative diseases unless amyloid beta-protein deposition is present. Brain Res. 606, 10-18 (1993).
  3. Binks, B. P. . Modern characterization methods of surfactant systems. , (1999).
  4. Briggman, K. L., Denk, W. Towards neural circuit reconstruction with volume electron microscopy techniques. Curr. Opin. Neurobiol. 16, 562-570 (2006).
  5. Chen, S., et al. Electron cryotomography of bacterial cells. J. Vis. Exp. (39), e1943 (2010).
  6. DiFiglia, M., et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 277, 1990-1993 (1997).
  7. Dubochet, J., Chang, J. J., Freeman, R., Lepault, J., McDowall, A. W. Frozen aqueous suspensions. Ultramicroscopy. 10, 55-61 (1982).
  8. Fernández-Busnadiego, R., et al. Insights into the molecular organization of the neuron by cryo-electron tomography. J. Electron Microsc. 60, 137-148 (2011).
  9. Frey, T. G., Perkins, G. A., Ellisman, M. H. Electron tomography of membrane-bound cellular organelles. Annu. Rev. Biophys. Biomol. Struct. 35, 199-224 (2006).
  10. Garvalov, B. K., et al. Luminal particles within cellular microtubules. J. Cell. Biol. 174, 759-765 (2006).
  11. Grünewald, K., Cyrklaff, M. Structure of complex viruses and virus-infected cells by electron cryo tomography. Curr. Opin. Microbiol. 9, 437-442 (2006).
  12. Gu, J., Bourne, P. E. . Structural bioinformatics. , (2009).
  13. De Hoop, M. J., Meyn, L., Dotti, C. G. Culturing hippocampal neurons and astrocytes from fetal rodent brain. Cell Biology: A Laboratory Handbook. 1, (1998).
  14. Denk, W., Horstmann, H. Serial Block-Face Scanning Electron Microscopy to Reconstruct Three-Dimensional Tissue Nanostructure. PLoS Biol. 2, e329 (2004).
  15. Fink, C. C., et al. Selective regulation of neurite extension and synapse formation by the beta but not the alpha isoform of CaMKII. Neuron. 39, 283-297 (2003).
  16. Jacob, W. A., et al. Mitochondrial matrix granules: their behavior during changing metabolic situations and their relationship to contact sites between inner and outer mitochondrial membranes. Microsc. Res. Tech. 27, 307-318 (1994).
  17. Jensen, G. J., Briegel, A. How electron cryotomography is opening a new window onto prokaryotic ultrastructure. Curr. Opin. Struct. Biol. 17, 260-267 (2007).
  18. Ibiricu, I., et al. Cryo Electron Tomography of Herpes Simplex Virus during Axonal Transport and Secondary Envelopment in Primary Neurons. PLoS Pathog. 7, e1002406 (2011).
  19. Kaech, S., Banker, G. Culturing hippocampal neurons. Nat. Protoc. 1, 2406-2415 (2006).
  20. Koning, R. I., et al. Cryo electron tomography of vitrified fibroblasts: microtubule plus ends in situ. J. Struct. Biol. 161, 459-468 (2008).
  21. Kremer, J. R., Mastronarde, D. N., McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71-76 (1996).
  22. Lotharius, J., Brundin, P. Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat. Rev. Neurosci. 3, 932-942 (2002).
  23. Lucić, V., et al. Multiscale imaging of neurons grown in culture: from light microscopy to cryo-electron tomography. J. Struct. Biol. 160, 146 (2007).
  24. Malin, S. A., Davis, B. M., Molliver, D. C. Production of dissociated sensory neuron cultures and considerations for their use in studying neuronal function and. 2, 152-160 (2007).
  25. Marsh, B. J. Lessons from tomographic studies of the mammalian Golgi. Biochim. Biophys. Acta. 1744, 273-292 (2005).
  26. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36-51 (2005).
  27. Medalia, O., et al. Organization of actin networks in intact filopodia. Curr. Biol. 17, 79-84 (2007).
  28. Medalia, O., et al. Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science. 298, 1209-1213 (2002).
  29. Meyerson, J. R., et al. Determination of molecular structures of HIV envelope glycoproteins using cryo-electron tomography and automated sub-tomogram averaging. J. Vis. Exp. (58), e2770 (2011).
  30. Nakatomi, H., et al. Regeneration of Hippocampal Pyramidal Neurons after Ischemic Brain Injury by Recruitment of Endogenous Neural Progenitors. Cell. 110, 429-441 (2002).
  31. Peachey, L. D. Electron Microscopic Observations on the Accumulation of Divalent Cations in Intramitochondrial Granules. J. Cell. Biol. 20, 95-111 (1964).
  32. Raza, M., et al. Aging is associated with elevated intracellular calcium levels and altered calcium homeostatic mechanisms in hippocampal neurons. Neurosci. Lett. 418, 77-81 (2007).
  33. Scroggs, R. S., Fox, A. P. Calcium current variation between acutely isolated adult rat dorsal root ganglion neurons of different size. J. Physiol. 445, 639-658 (1992).
  34. Squire, L. R. . Fundamental neuroscience. , (2003).
  35. Sulzer, D. Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci. 30, 244-250 (2007).
  36. Tapia, J. C., et al. Early expression of glycine and GABA(A) receptors in developing spinal cord neurons. Effects on neurite outgrowth. Neurosciences. 108, 493-506 (2001).

Play Video

Citer Cet Article
Shahmoradian, S. H., Galiano, M. R., Wu, C., Chen, S., Rasband, M. N., Mobley, W. C., Chiu, W. Preparation of Primary Neurons for Visualizing Neurites in a Frozen-hydrated State Using Cryo-Electron Tomography. J. Vis. Exp. (84), e50783, doi:10.3791/50783 (2014).

View Video