Summary

Electroencephalography Measurements in Awake Marmosets Listening to Conspecific Vocalizations

Published: July 26, 2024
doi:

Summary

To study the evolution of language, comparing brain mechanisms in humans with those in nonhuman primates is important. We developed a method to noninvasively measure the electroencephalography (EEG) of awake animals. It allows us to directly compare EEG data between humans and animals for the long term without harming them.

Abstract

Vocal communication plays a crucial role in the social interactions of primates, particularly in survival and social organization. Humans have developed a unique and advanced vocal communication strategy in the form of language. To study the evolution of human language, it is necessary to investigate the neural mechanisms underlying vocal processing in humans, as well as to understand how brain mechanisms have evolved by comparing them with those in nonhuman primates. Herein, we developed a method to noninvasively measure the electroencephalography (EEG) of awake nonhuman primates. This recording method allows for long-term studies without harming the animals, and, importantly, allows us to directly compare nonhuman primate EEG data with human data, providing insights into the evolution of human language. In the current study, we used the scalp EEG recording method to investigate brain activity in response to species-specific vocalizations in marmosets. This study provides novel insights by using scalp EEG to capture widespread neural representations in marmosets during vocal perception, filling gaps in existing knowledge.

Introduction

Primates use species-specific vocalizations to convey biologically important information, such as the caller's emotional state or intention to maintain social bonds, the presence of predators, or other dangerous situations. Investigation of the neural mechanisms underlying the perception of vocalization in vocal-rich nonhuman primates may provide us with critical clues to better understand the evolutionary origins of human language.

Common marmosets are small primates native to South America. In recent years, marmosets have been increasingly used as model animals, alongside macaque monkeys, because of their high reproductivity, ease of use owing to their small size, and the development of useful transgenic techniques1,2,3. In addition to their utility as disease models, rich vocal communication within groups is another unique characteristic of this species4,5,6,7. Marmosets routinely exchange vocal signals to communicate with invisible conspecifics in the forest. By examining the brain activity involved in vocal perception and production in marmosets, we can determine how they process the auditory information of their own or conspecific calls in the brain and identify which neural circuits are involved. Previous studies have demonstrated neural activity in the primary auditory cortex8,9,10,11,12 and frontal cortex13,14 involved in vocal production in marmosets. Furthermore, these excited and suppressed neuronal responses were modulated by auditory-vocal interactions in the primary auditory cortex8,10. These studies provided detailed neural activity data at the single-neuron level using invasive recording methods. Numerous studies have further examined the neural activity involved in marmoset vocal production; however, vocal perception remains poorly understood15,16.

Several noninvasive brain imaging studies have elucidated the neural mechanisms of vocal processing in marmosets17,18,19; their high spatial resolution is an advantage, however, keeping animals in the awake state during scanning requires advanced techniques. However, more recently, Jafari et al. identified frontotemporal regions involved in vocal perception in awake marmosets using functional magnetic resonance imaging (fMRI)19. Almost all experiments to elucidate the brain functions involved in vocal perception and production in humans have been conducted using noninvasive methods, such as scalp electroencephalography (EEG), magnetoencephalography (MEG)20,21, and fMRI22,23,24. Numerous studies in humans have investigated brain activity related to vocal perception using EEG. Most of these studies have focused on emotional information25,26,27 and the saliency of emotional words28, with the results revealing changes in event-related potentials during vocal perception29. Electrocorticography (ECoG) and single-neuron recordings using intracranially implanted electrodes in humans have only been conducted in a limited number of experiments in patients undergoing neurosurgical treatment30,31.

An evolutionary perspective comparing humans with monkeys is important when understanding the unique neural mechanisms underlying vocal perception and production that have developed in humans. To directly compare the neural mechanisms involved in speech perception and vocalization in vocal-rich nonhuman primates, such as the marmoset, with humans, it is important to compare data between the two species using the same method. Functional MRI allows whole-brain imaging and has a high spatial resolution. It has the advantage of recording activity perpendicular to the skull or in deep regions that are difficult to record with EEG or MEG. However, the MRI machine is expensive to install and maintain, and there are many restrictions on the stimuli that can be presented due to the nature of the device. In comparison, EEG, event-related potentials (ERPs), and MEG have a high temporal resolution, making them useful for analyzing time-series vocal processing. In particular, EEG has the advantages of high mobility and the ability to be used in a variety of experimental settings, relatively low cost, and the requirement for just a single operator.

Since a large amount of EEG data has already been obtained in humans, EEG measurement methods using non-invasive paradigms are needed for non-human primates. Our research group developed a unique noninvasive EEG recording method using tubes32 for macaques and marmosets. Here, we report several novel findings regarding auditory processing in nonhuman primates33,34,35,36,37. To characterize brain activity in response to species-specific vocalizations in marmosets, we constructed an experimental system to noninvasively record brain activity using electrodes placed on the scalp. In this study, we describe the EEG measurement method for marmosets.

Protocol

All experiments were approved by the Animal Experimentation Committee of EHUB (No.2022-003, 2023-104) and conducted in accordance with the Guide for Care and Use of Laboratory Primates published by EHUB. Nine common marmosets (Callithrix jacchus, six males and three females, 2-12 years old, weighing 330-490 g) were used for the experiment. 1. Animals House the marmosets in single cages equipped with nest boxes, wooden perches, and other enrichment devices….

Representative Results

First, we plotted the average event-related potentials (ERPs) for each auditory stimulus in the marmosets (Figure 2). The auditory evoked potential (AEP) was prominent in the Noise condition, reflecting the clear onset of the stimuli (see Figure 1D). To compare the averaged ERPs between call types and noise stimuli, we applied a one-way analysis of variance (ANOVA) with stimuli as the between-subjects factor in Cz response. We found a significant main e…

Discussion

Points to note about anesthesia
Both ketamine and xylazine administration have been attempted, and while these are analgesic and therefore suitable for long painful tasks, marmosets tend to experience decreases in blood oxygen levels without oxygen inhalation44. In short, alfaxalon is probably best suited for painless tasks such as shaving or mask making. In addition, for shaving-, which takes only 10-15 min, inhalation anesthesia would be the most suitable. Isoflurane was n…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Hakubi Project of Kyoto University, Grant-in-Aid for Challenging Research (Pioneering) (No.22K18644), Grant-in-Aid for Scientific Research (C) (No. 22K12745 ), Grant-in-Aid for Scientific Research (B) (No. 21H02851), and Grant-in-Aid for Scientific Research (A) (No. 19H01039). We would like to thank Editage (www.editage.jp) for English language editing.

Materials

Alfaxalone Meiji Animal Health Alfaxan
Amplifier Brain Products BrainAmp
Atropine Fuso Pharmaceutical Industries Atropine Sulfate Injection
Audio editor Adobe Adobe Audition
Data processing software MathWorks MATLAB version R2023a
Data processing toolbox University of California-SanDiego EEGLAB
Data processing toolbox University of California-Davis ERPLAB
Electric shaver Panasonic ER803PPA
Electrode Unique Medical UL-3010 AgCl coated (custom)
Electrode gel Neurospec AG V16 SuperVisc
Electrode input box Brain Products EIB64-DUO 64ch
Glue 3M Scotch 7005S
Hair removering cream Kracie epilat for sensitive skin
Isoflurane Bussan Animal Health ds isoflurane
Liquid gum San-ei Yakuhin Boeki Arabic Call SS Gum arabic+water
Liquid nutrition Nestlé Health Science Company Isocal 1.0 Junior Polymeric formula
Maropitant Zoetis  Cerenia injectable solution
Monitor Camera Intel RealSense LiDAR Camera L515
Monkey pellets Oriental Yeast SPS
Primate chair Natsume Seisakusho Order made
Pulse oximeters Covident Nellcor PM10N
Skin prepping pasta  Mammendorfer Institut für Physik und Medizin NeuPrep
Slicon tube AsONE Φ4 x 7mm
Speaker Fostex PM0.3
Synchronization device Brain Vision StimTrak
Thermoplastic mask CIVCO MTAPU Type Uniframe Thermoplastic Mask 2.4mm

Referencias

  1. Miller, C. T., et al. Marmosets: A neuroscientific model of human social behavior. Neuron. 90 (2), 219-233 (2016).
  2. Okano, H., Hikishima, K., Iriki, A., Sasaki, E. The common marmoset as a novel animal model system for biomedical and neuroscience research applications. Semin Fetal Neonatal Med. 17 (6), 336-340 (2012).
  3. t’Hart, B. A., Abbott, D. H., Nakamura, K., Fuchs, E. The marmoset monkey: a multi-purpose preclinical and translational model of human biology and disease. Drug Discov Today. 17 (21-22), 1160-1165 (2012).
  4. Bezerra, B. M., Souto, A. Structure and usage of the vocal repertoire of Callithrix jacchus. Int J Primatol. 29 (3), 671-701 (2008).
  5. Agamaite, J. A., Chang, C. J., Osmanski, M. S., Wang, X. A quantitative acoustic analysis of the vocal repertoire of the common marmoset (Callithrix jacchus). J Acoust Soc Am. 138 (5), 2906-2928 (2015).
  6. Pistorio, A. L., Vintch, B., Wang, X. Acoustic analysis of vocal development in a New World primate, the common marmoset (Callithrix jacchus). J Acoust Soc Am. 120 (3), 1655-1670 (2006).
  7. Grijseels, D. M., Prendergast, B. J., Gorman, J. C., Miller, C. T. The neurobiology of vocal communication in marmosets. Ann N. Y. Acad Sci. 1528 (1), 13-28 (2023).
  8. Eliades, S. J., Wang, X. Neural substrates of vocalization feedback monitoring in primate auditory cortex. Nature. 453 (7198), 1102-1106 (2008).
  9. Eliades, S. J., Wang, X. Comparison of auditory-vocal interactions across multiple types of vocalizations in marmoset auditory cortex. J Neurophysiol. 109 (6), 1638-1657 (2013).
  10. Eliades, S. J., Wang, X. Contributions of sensory tuning to auditory-vocal interactions in marmoset auditory cortex. Hear Res. 348, 98-111 (2017).
  11. Eliades, S. J., Wang, X. Neural correlates of the lombard effect in primate auditory cortex. J Neurosci. 32 (31), 10737-10748 (2012).
  12. Tsunada, J., Wang, X., Eliades, S. J. Multiple processes of vocal sensory-motor interaction in primate auditory cortex. Nat Commun. 15 (1), 3093 (2024).
  13. Miller, C. T., Thomas, A. W., Nummela, S. U., de la Mothe, L. A. Responses of primate frontal cortex neurons during natural vocal communication. J Neurophysiol. 114 (2), 1158-1171 (2015).
  14. Roy, S., Zhao, L., Wang, X. Distinct neural activities in premotor cortex during natural vocal behaviors in a New World Primate, the common marmoset (Callithrix jacchus). J Neurosci. 36 (48), 12168-12179 (2016).
  15. Wang, X., Merzenich, M. M., Beitel, R., Schreiner, C. E. Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. J Neurophysiol. 74 (6), 2685-2706 (1995).
  16. Zeng, H. -. h., et al. Distinct neuron populations for simple and compound calls in the primary auditory cortex of awake marmosets. National Science Review. 8 (11), nwab126 (2021).
  17. Sadagopan, S., Temiz-Karayol, N. Z., Voss, H. U. High-field functional magnetic resonance imaging of vocalization processing in marmosets. Sci Rep. 5, 10950 (2015).
  18. Kato, M., et al. Individual identity and affective valence in marmoset calls: in vivo brain imaging with vocal sound playback. Anim Cogn. 21 (3), 331-343 (2018).
  19. Jafari, A., et al. A vocalization-processing network in marmosets. Cell Rep. 42 (5), 112526 (2023).
  20. Papanicolaou, A. C., et al. Differential brain activation patterns during perception of voice and tone onset time series: a MEG study. Neuroimage. 18 (2), 448-459 (2003).
  21. Capilla, A., Belin, P., Gross, J. The early spatio-temporal correlates and task independence of cerebral voice processing studied with MEG. Cereb Cortex. 23 (6), 1388-1395 (2012).
  22. Belin, P., Zatorre, R. J., Lafaille, P., Ahad, P., Pike, B. Voice-selective areas in human auditory cortex. Nature. 403 (6767), 309-312 (2000).
  23. Perrodin, C., Kayser, C., Abel, T. J., Logothetis, N. K., Petkov, C. I. Who is that? Brain networks and mechanisms for identifying individuals. Trends Cogn Sci. 19 (12), 783-796 (2015).
  24. Pernet, C. R., et al. The human voice areas: Spatial organization and inter-individual variability in temporal and extra-temporal cortices. Neuroimage. 119, 164-174 (2015).
  25. Chen, X., Pan, Z., Wang, P., Zhang, L., Yuan, J. EEG oscillations reflect task effects for the change detection in vocal emotion. Cogn Neurodyn. 9 (3), 351-358 (2015).
  26. Hiyoshi-Taniguchi, K., et al. EEG correlates of voice and face emotional judgments in the human brain. Cogn Comput. 7 (1), 11-19 (2015).
  27. Lévêque, Y., Schön, D. Listening to the human voice alters sensorimotor brain rhythms. PloS One. 8, e80659 (2013).
  28. Liu, T., et al. Electrophysiological insights into processing nonverbal emotional vocalizations. NeuroReport. 23, 108-112 (2012).
  29. Bruneau, N., et al. Early neurophysiological correlates of vocal versus non-vocal sound processing in adults. Brain Res. 1528, 20-27 (2013).
  30. Flinker, A., et al. Single-Trial speech suppression of auditory cortex activity in humans. J Neurosci. 30, 16643-16650 (2010).
  31. Greenlee, J. D. W., et al. Human auditory cortical activation during self-vocalization. PloS One. 6 (3), e14744 (2011).
  32. Itoh, K., Konoike, N., Iwaoki, H., Igarashi, H., Nakamura, K. A novel "dip-in electrode" method for electrode application to record noninvasive scalp electroencephalograms and evoked potentials in an awake common marmoset. Neuroimage: Reports. 2 (3), 100116 (2022).
  33. Itoh, K., et al. Cerebral cortical processing time is elongated in human brain evolution. Sci Rep. 12 (1), 1103 (2022).
  34. Itoh, K., Nejime, M., Konoike, N., Nakamura, K., Nakada, T. Evolutionary elongation of the time window of integration in auditory cortex: macaque vs. human comparison of the effects of sound duration on auditory evoked potentials. Front Neurosci. 13, 630 (2019).
  35. Itoh, K., Iwaoki, H., Konoike, N., Igarashi, H., Nakamura, K. Noninvasive scalp recording of the middle latency responses and cortical auditory evoked potentials in the alert common marmoset. Hear Res. 405, 108229 (2021).
  36. Itoh, K., Nejime, M., Konoike, N., Nakada, T., Nakamura, K. Noninvasive scalp recording of cortical auditory evoked potentials in the alert macaque monkey. Hear Res. 327, 117-125 (2015).
  37. Konoike, N., et al. Comparison of noninvasive, scalp-recorded auditory steady-state responses in humans, rhesus monkeys, and common marmosets. Sci Rep. 12 (1), 9210 (2022).
  38. Eliades, S. J., Miller, C. T. Marmoset vocal communication: Behavior and neurobiology. Dev Neurobiol. 77 (3), 286-299 (2017).
  39. Ray, S., Hsiao, S. S., Crone, N. E., Franaszczuk, P. J., Niebur, E. Effect of stimulus intensity on the spike-local field potential relationship in the secondary somatosensory cortex. J Neurosci. 28 (29), 7334-7343 (2008).
  40. Leonard, M. K., et al. Large-scale single-neuron speech sound encoding across the depth of human cortex. Nature. 626 (7999), 593-602 (2024).
  41. Dubey, A., Ray, S. Comparison of tuning properties of gamma and high-gamma power in local field potential (LFP) versus electrocorticogram (ECoG) in visual cortex. Sci Rep. 10 (1), 5422 (2020).
  42. Ray, S., Crone, N. E., Niebur, E., Franaszczuk, P. J., Hsiao, S. S. Neural correlates of high-gamma oscillations (60-200 Hz) in Macaque local field potentials and their potential implications in electrocorticography. Journal Neurosci. 28 (45), 11526-11536 (2008).
  43. Buzsáki, G., Anastassiou, C. A., Koch, C. The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. Nat Rev Neurosci. 13 (6), 407-420 (2012).
  44. Konoike, N., Miwa, M., Ishigami, A., Nakamura, K. Hypoxemia after single-shot anesthesia in common marmosets. J Med Primatol. 46 (3), 70-74 (2017).
This article has been published
Video Coming Soon
Keep me updated:

.

Citar este artículo
Konoike, N., Miwa, M., Itoh, K., Nakamura, K. Electroencephalography Measurements in Awake Marmosets Listening to Conspecific Vocalizations . J. Vis. Exp. (209), e66869, doi:10.3791/66869 (2024).

View Video