Summary

清醒狨猴的脑电图测量:聆听同种发声

Published: July 26, 2024
doi:

Summary

为了研究语言的进化,比较人类和非人类灵长类动物的大脑机制很重要。我们开发了一种无创测量清醒动物脑电图 (EEG) 的方法。它使我们能够直接长期比较人类和动物之间的脑电图数据,而不会伤害它们。

Abstract

声音交流在灵长类动物的社交互动中起着至关重要的作用,尤其是在生存和社会组织中。人类以语言的形式发展出一种独特而先进的声音交流策略。要研究人类语言的进化,有必要研究人类发声处理背后的神经机制,并通过将它们与非人类灵长类动物的机制进行比较来了解大脑机制是如何进化的。在此,我们开发了一种无创测量清醒非人灵长类动物脑电图 (EEG) 的方法。这种记录方法允许在不伤害动物的情况下进行长期研究,重要的是,它允许我们直接将非人类灵长类动物的脑电图数据与人类数据进行比较,从而深入了解人类语言的进化。在目前的研究中,我们使用头皮脑电图记录方法来研究大脑活动对狨猴物种特异性发声的反应。本研究通过使用头皮脑电图捕捉狨猴在声音感知过程中的广泛神经表征,填补了现有知识的空白,从而提供了新的见解。

Introduction

灵长类动物使用物种特异性的发声来传达生物学上重要的信息,例如呼叫者的情绪状态或维持社会纽带的意图、捕食者的存在或其他危险情况。对声音丰富的非人类灵长类动物发声感知背后的神经机制的研究可能为我们提供关键线索,以更好地理解人类语言的进化起源。

普通狨猴是原产于南美洲的小型灵长类动物。近年来,狨猴越来越多地与猕猴一起被用作模式动物,因为它们的繁殖能力高,体型小,易于使用,以及有用的转基因技术的发展 1,2,3。除了作为疾病模型的实用性外,群体内丰富的声音交流是该物种的另一个独特特征 4,5,6,7。狨猴经常交换声音信号,与森林中看不见的同种动物交流。通过检查狨猴发声感知和产生所涉及的大脑活动,我们可以确定它们如何处理大脑中自身或同种呼叫的听觉信息,并确定涉及哪些神经回路。先前的研究表明,初级听觉皮层89101112 和额叶皮层1314 的神经活动参与狨猴的声音产生。此外,这些兴奋和抑制的神经元反应受到初级听觉皮层中听觉-声音相互作用的调节 8,10。这些研究使用侵入性记录方法提供了单神经元水平的详细神经活动数据。许多研究进一步检查了狨猴发声产生所涉及的神经活动;然而,对声音感知的理解仍然知之甚少15,16

几项无创脑成像研究阐明了狨猴发声处理的神经机制 17,18,19;它们的高空间分辨率是一个优势,但是,在扫描过程中使动物保持清醒状态需要先进的技术。然而,最近,Jafari 等人使用功能性磁共振成像 (fMRI) 确定了清醒狨猴参与声音感知的额颞区19。几乎所有阐明人类参与发声感知和产生的大脑功能的实验都是使用无创方法进行的,例如头皮脑电图 (EEG)、脑磁图 (MEG)20,21 和 fMRI 22,23,24。许多人类研究调查了使用 EEG 与声音感知相关的大脑活动。这些研究大多集中在情绪信息 25,26,27 和情绪词的显著性 28 上,结果揭示了声音感知过程中事件相关电位的变化29。使用颅内植入电极的人体皮层电图 (ECoG) 和单神经元记录仅在接受神经外科治疗的患者中进行了有限数量的实验30,31

在了解人类发声感知和产生背后的独特神经机制时,将人类与猴子进行比较的进化观点非常重要。为了直接比较声音丰富的非人类灵长类动物(如狨猴)与人类的语音感知和发声所涉及的神经机制,使用相同的方法比较两个物种之间的数据非常重要。功能性 MRI 允许全脑成像并具有很高的空间分辨率。它的优点是可以记录垂直于颅骨或难以用 EEG 或 MEG 记录的深部区域的活动。然而,MRI 机器的安装和维护成本很高,并且由于设备的性质,可以呈现的刺激存在许多限制。相比之下,EEG、事件相关电位 (ERP) 和 MEG 具有较高的时间分辨率,使其可用于分析时间序列声音处理。特别是,脑电图具有移动性高、能够在各种实验环境中使用、成本相对较低以及只需要一名操作员的优势。

由于已经在人类身上获得了大量的脑电图数据,因此非人类灵长类动物需要使用非侵入性范式的脑电图测量方法。我们的研究小组开发了一种独特的无创脑电图记录方法,使用32 号管对猕猴和狨猴进行记录。在这里,我们报告了有关非人灵长类动物听觉处理的几项新发现 33,34,35,36,37。为了表征响应狨猴物种特异性发声的大脑活动,我们构建了一个实验系统,使用放置在头皮上的电极无创记录大脑活动。在这项研究中,我们描述了狨猴的脑电图测量方法。

Protocol

所有实验均经 EHUB 动物实验委员会(No.2022-003、2023-104)批准,并按照 EHUB 发布的《实验室灵长类动物护理和使用指南》进行。实验使用了 9 只普通狨猴 (Callithrix jacchus,6 只雄性和 3 只雌性,2-12 岁,体重 330-490 g)。 1. 动物 将狨猴安置在配备巢箱、木制栖木和其他丰富装置的单个笼子中。 将房间保持在 12 小时的光暗循环下,温度和湿度分…

Representative Results

首先,我们绘制了狨猴中每种听觉刺激的平均事件相关电位 (ERP)(图 2)。听觉诱发电位 (AEP) 在 噪声 条件下很突出,反映了刺激的清晰开始(见 图 1D)。为了比较呼叫类型和噪声刺激之间的平均 ERP,我们应用了单因素方差分析 (ANOVA),将刺激作为 Cz 响应中的受试者间因子。我们发现刺激分别在刺激开始后 13-18 ms、28-36 ms 和 45-88 ms 对 C…

Discussion

关于麻醉的注意事项
氯胺酮和甲苯噻嗪给药都已被尝试过,虽然它们是镇痛剂,因此适用于长时间的痛苦任务,但狨猴在没有吸氧的情况下往往会出现血氧水平降低44。简而言之,alfaxalon 可能最适合剃须或制作面膜等无痛任务。此外,对于仅需 10-15 分钟的剃须,吸入麻醉将是最合适的。由于异氟醚持续时间短且浓度低 (约 1%),因此在插管期间未使用。

<p cla…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

这项工作得到了京都大学白尾项目、挑战研究补助金(先锋)(No.22K18644)、科学研究补助金 (C) (No. 22K12745)、科学研究补助金 (B) (No. 21H02851) 和科学研究补助金 (A) (No. 19H01039) 的支持。感谢 意得辑 (www.editage.jp) 的英文编辑工作。

Materials

Alfaxalone Meiji Animal Health Alfaxan
Amplifier Brain Products BrainAmp
Atropine Fuso Pharmaceutical Industries Atropine Sulfate Injection
Audio editor Adobe Adobe Audition
Data processing software MathWorks MATLAB version R2023a
Data processing toolbox University of California-SanDiego EEGLAB
Data processing toolbox University of California-Davis ERPLAB
Electric shaver Panasonic ER803PPA
Electrode Unique Medical UL-3010 AgCl coated (custom)
Electrode gel Neurospec AG V16 SuperVisc
Electrode input box Brain Products EIB64-DUO 64ch
Glue 3M Scotch 7005S
Hair removering cream Kracie epilat for sensitive skin
Isoflurane Bussan Animal Health ds isoflurane
Liquid gum San-ei Yakuhin Boeki Arabic Call SS Gum arabic+water
Liquid nutrition Nestlé Health Science Company Isocal 1.0 Junior Polymeric formula
Maropitant Zoetis  Cerenia injectable solution
Monitor Camera Intel RealSense LiDAR Camera L515
Monkey pellets Oriental Yeast SPS
Primate chair Natsume Seisakusho Order made
Pulse oximeters Covident Nellcor PM10N
Skin prepping pasta  Mammendorfer Institut für Physik und Medizin NeuPrep
Slicon tube AsONE Φ4 x 7mm
Speaker Fostex PM0.3
Synchronization device Brain Vision StimTrak
Thermoplastic mask CIVCO MTAPU Type Uniframe Thermoplastic Mask 2.4mm

Referencias

  1. Miller, C. T., et al. Marmosets: A neuroscientific model of human social behavior. Neuron. 90 (2), 219-233 (2016).
  2. Okano, H., Hikishima, K., Iriki, A., Sasaki, E. The common marmoset as a novel animal model system for biomedical and neuroscience research applications. Semin Fetal Neonatal Med. 17 (6), 336-340 (2012).
  3. t’Hart, B. A., Abbott, D. H., Nakamura, K., Fuchs, E. The marmoset monkey: a multi-purpose preclinical and translational model of human biology and disease. Drug Discov Today. 17 (21-22), 1160-1165 (2012).
  4. Bezerra, B. M., Souto, A. Structure and usage of the vocal repertoire of Callithrix jacchus. Int J Primatol. 29 (3), 671-701 (2008).
  5. Agamaite, J. A., Chang, C. J., Osmanski, M. S., Wang, X. A quantitative acoustic analysis of the vocal repertoire of the common marmoset (Callithrix jacchus). J Acoust Soc Am. 138 (5), 2906-2928 (2015).
  6. Pistorio, A. L., Vintch, B., Wang, X. Acoustic analysis of vocal development in a New World primate, the common marmoset (Callithrix jacchus). J Acoust Soc Am. 120 (3), 1655-1670 (2006).
  7. Grijseels, D. M., Prendergast, B. J., Gorman, J. C., Miller, C. T. The neurobiology of vocal communication in marmosets. Ann N. Y. Acad Sci. 1528 (1), 13-28 (2023).
  8. Eliades, S. J., Wang, X. Neural substrates of vocalization feedback monitoring in primate auditory cortex. Nature. 453 (7198), 1102-1106 (2008).
  9. Eliades, S. J., Wang, X. Comparison of auditory-vocal interactions across multiple types of vocalizations in marmoset auditory cortex. J Neurophysiol. 109 (6), 1638-1657 (2013).
  10. Eliades, S. J., Wang, X. Contributions of sensory tuning to auditory-vocal interactions in marmoset auditory cortex. Hear Res. 348, 98-111 (2017).
  11. Eliades, S. J., Wang, X. Neural correlates of the lombard effect in primate auditory cortex. J Neurosci. 32 (31), 10737-10748 (2012).
  12. Tsunada, J., Wang, X., Eliades, S. J. Multiple processes of vocal sensory-motor interaction in primate auditory cortex. Nat Commun. 15 (1), 3093 (2024).
  13. Miller, C. T., Thomas, A. W., Nummela, S. U., de la Mothe, L. A. Responses of primate frontal cortex neurons during natural vocal communication. J Neurophysiol. 114 (2), 1158-1171 (2015).
  14. Roy, S., Zhao, L., Wang, X. Distinct neural activities in premotor cortex during natural vocal behaviors in a New World Primate, the common marmoset (Callithrix jacchus). J Neurosci. 36 (48), 12168-12179 (2016).
  15. Wang, X., Merzenich, M. M., Beitel, R., Schreiner, C. E. Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. J Neurophysiol. 74 (6), 2685-2706 (1995).
  16. Zeng, H. -. h., et al. Distinct neuron populations for simple and compound calls in the primary auditory cortex of awake marmosets. National Science Review. 8 (11), nwab126 (2021).
  17. Sadagopan, S., Temiz-Karayol, N. Z., Voss, H. U. High-field functional magnetic resonance imaging of vocalization processing in marmosets. Sci Rep. 5, 10950 (2015).
  18. Kato, M., et al. Individual identity and affective valence in marmoset calls: in vivo brain imaging with vocal sound playback. Anim Cogn. 21 (3), 331-343 (2018).
  19. Jafari, A., et al. A vocalization-processing network in marmosets. Cell Rep. 42 (5), 112526 (2023).
  20. Papanicolaou, A. C., et al. Differential brain activation patterns during perception of voice and tone onset time series: a MEG study. Neuroimage. 18 (2), 448-459 (2003).
  21. Capilla, A., Belin, P., Gross, J. The early spatio-temporal correlates and task independence of cerebral voice processing studied with MEG. Cereb Cortex. 23 (6), 1388-1395 (2012).
  22. Belin, P., Zatorre, R. J., Lafaille, P., Ahad, P., Pike, B. Voice-selective areas in human auditory cortex. Nature. 403 (6767), 309-312 (2000).
  23. Perrodin, C., Kayser, C., Abel, T. J., Logothetis, N. K., Petkov, C. I. Who is that? Brain networks and mechanisms for identifying individuals. Trends Cogn Sci. 19 (12), 783-796 (2015).
  24. Pernet, C. R., et al. The human voice areas: Spatial organization and inter-individual variability in temporal and extra-temporal cortices. Neuroimage. 119, 164-174 (2015).
  25. Chen, X., Pan, Z., Wang, P., Zhang, L., Yuan, J. EEG oscillations reflect task effects for the change detection in vocal emotion. Cogn Neurodyn. 9 (3), 351-358 (2015).
  26. Hiyoshi-Taniguchi, K., et al. EEG correlates of voice and face emotional judgments in the human brain. Cogn Comput. 7 (1), 11-19 (2015).
  27. Lévêque, Y., Schön, D. Listening to the human voice alters sensorimotor brain rhythms. PloS One. 8, e80659 (2013).
  28. Liu, T., et al. Electrophysiological insights into processing nonverbal emotional vocalizations. NeuroReport. 23, 108-112 (2012).
  29. Bruneau, N., et al. Early neurophysiological correlates of vocal versus non-vocal sound processing in adults. Brain Res. 1528, 20-27 (2013).
  30. Flinker, A., et al. Single-Trial speech suppression of auditory cortex activity in humans. J Neurosci. 30, 16643-16650 (2010).
  31. Greenlee, J. D. W., et al. Human auditory cortical activation during self-vocalization. PloS One. 6 (3), e14744 (2011).
  32. Itoh, K., Konoike, N., Iwaoki, H., Igarashi, H., Nakamura, K. A novel "dip-in electrode" method for electrode application to record noninvasive scalp electroencephalograms and evoked potentials in an awake common marmoset. Neuroimage: Reports. 2 (3), 100116 (2022).
  33. Itoh, K., et al. Cerebral cortical processing time is elongated in human brain evolution. Sci Rep. 12 (1), 1103 (2022).
  34. Itoh, K., Nejime, M., Konoike, N., Nakamura, K., Nakada, T. Evolutionary elongation of the time window of integration in auditory cortex: macaque vs. human comparison of the effects of sound duration on auditory evoked potentials. Front Neurosci. 13, 630 (2019).
  35. Itoh, K., Iwaoki, H., Konoike, N., Igarashi, H., Nakamura, K. Noninvasive scalp recording of the middle latency responses and cortical auditory evoked potentials in the alert common marmoset. Hear Res. 405, 108229 (2021).
  36. Itoh, K., Nejime, M., Konoike, N., Nakada, T., Nakamura, K. Noninvasive scalp recording of cortical auditory evoked potentials in the alert macaque monkey. Hear Res. 327, 117-125 (2015).
  37. Konoike, N., et al. Comparison of noninvasive, scalp-recorded auditory steady-state responses in humans, rhesus monkeys, and common marmosets. Sci Rep. 12 (1), 9210 (2022).
  38. Eliades, S. J., Miller, C. T. Marmoset vocal communication: Behavior and neurobiology. Dev Neurobiol. 77 (3), 286-299 (2017).
  39. Ray, S., Hsiao, S. S., Crone, N. E., Franaszczuk, P. J., Niebur, E. Effect of stimulus intensity on the spike-local field potential relationship in the secondary somatosensory cortex. J Neurosci. 28 (29), 7334-7343 (2008).
  40. Leonard, M. K., et al. Large-scale single-neuron speech sound encoding across the depth of human cortex. Nature. 626 (7999), 593-602 (2024).
  41. Dubey, A., Ray, S. Comparison of tuning properties of gamma and high-gamma power in local field potential (LFP) versus electrocorticogram (ECoG) in visual cortex. Sci Rep. 10 (1), 5422 (2020).
  42. Ray, S., Crone, N. E., Niebur, E., Franaszczuk, P. J., Hsiao, S. S. Neural correlates of high-gamma oscillations (60-200 Hz) in Macaque local field potentials and their potential implications in electrocorticography. Journal Neurosci. 28 (45), 11526-11536 (2008).
  43. Buzsáki, G., Anastassiou, C. A., Koch, C. The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. Nat Rev Neurosci. 13 (6), 407-420 (2012).
  44. Konoike, N., Miwa, M., Ishigami, A., Nakamura, K. Hypoxemia after single-shot anesthesia in common marmosets. J Med Primatol. 46 (3), 70-74 (2017).
This article has been published
Video Coming Soon
Keep me updated:

.

Citar este artículo
Konoike, N., Miwa, M., Itoh, K., Nakamura, K. Electroencephalography Measurements in Awake Marmosets Listening to Conspecific Vocalizations . J. Vis. Exp. (209), e66869, doi:10.3791/66869 (2024).

View Video