Summary

真菌β-葡聚糖的分离纯化作为胶质母细胞瘤的免疫治疗策略

Published: June 02, 2023
doi:

Summary

本协议描述了四种不同真菌β-葡聚糖的纯化步骤和后续研究,作为增强小胶质细胞对胶质母细胞瘤细胞的抗肿瘤特性的潜在免疫调节分子。

Abstract

开发针对胶质母细胞瘤的有效疗法的最大挑战之一是克服肿瘤微环境中的强免疫抑制。免疫疗法已成为使免疫系统对肿瘤细胞的反应的有效策略。胶质瘤相关巨噬细胞和小胶质细胞(GAMs)是这种抗炎方案的主要驱动因素。因此,增强GAM的抗癌反应可能代表治疗胶质母细胞瘤患者的潜在联合辅助疗法。本着这种精神,真菌β-葡聚糖分子长期以来一直被称为有效的免疫调节剂。已经描述了它们刺激先天免疫活性和改善治疗反应的能力。这些调节特征部分归因于它们与模式识别受体结合的能力,有趣的是,模式识别受体在GAM中得到了极大的表达。因此,这项工作的重点是真菌β-葡聚糖的分离,纯化和随后的使用,以增强小胶质细胞对胶质母细胞瘤细胞的杀瘤反应。小鼠胶质母细胞瘤(GL261)和小胶质细胞(BV-2)细胞系用于测试从当前生物制药行业中大量使用的蘑菇中提取的四种不同真菌β-葡聚糖的免疫调节特性: Pleurotus ostreatus Pleurotus djamor 猴头菇和灵 。为了测试这些化合物,进行了共刺激测定以测量预活化的小胶质细胞条件培养基对胶质母细胞瘤细胞增殖和凋亡活化的影响。

Introduction

尽管在神经肿瘤学领域取得了新的成就,但胶质母细胞瘤患者的预期寿命仍然微不足道。针对脑肿瘤的金标准疗法基于手术、放疗和化疗的结合。然而,在过去十年中,免疫疗法已成为治疗不同类型癌症的有力策略1。因此,利用身体对肿瘤细胞的免疫反应的可能性最近已成为肿瘤学的第四大支柱。

人们早就知道,该领域最大的挑战之一是克服肿瘤微环境中发现的强免疫抑制2。特别是,在胶质母细胞瘤的情况下,这是最常见和最具侵袭性的脑癌形式之一,揭示协调这种促肿瘤场景的关键途径,并找到可以抵消免疫系统抑郁反应的新化合物,可能为未来针对这种不治之症的治疗铺平道路。

大脑拥有自己的免疫系统细胞,最相关的细胞类型是小胶质细胞。这些细胞已被证明在不同的中心疾病中具有相当复杂的行为3。在原发性脑肿瘤(例如胶质母细胞瘤)的情况下,这些细胞向支持肿瘤细胞定植脑实质抗炎表型转移3。许多出版物增强了这些细胞在肿瘤进展过程中的主要作用。其中一个主要原因是胶质瘤相关的小胶质细胞和浸润巨噬细胞(GAMs)占肿瘤总量的三分之一,因此表明它们在脑肿瘤进展过程中的激活状态的明确影响45

本着这种精神,真菌β-葡聚糖被描述为触发有效免疫反应的有效分子,包括吞噬作用和促炎因子的产生,导致有害物质消除678910。真菌β-葡聚糖通常使用来自不同蘑菇部位的提取物进行研究。然而,特定效应的归属需要其纯化以避免歧义并能够理解诸如免疫调节剂之类的分子的作用机制8

在这项工作中,可溶性β葡聚糖从四种不同蘑菇的子实体中纯化,通常用作食用蘑菇(Pleurotus ostreatusPleurotus djamor)和药用(灵芝猴头菇)蘑菇。特别是,这四种蘑菇在食品和制药工业中有很大的用途,并且是在商业企业的环境友好型循环经济中生产的(见 材料表)。

为了为真菌β-葡聚糖在脑癌治疗中的未来使用奠定基础,明确的纯化策略和临床前研究深入研究它们与免疫系统细胞的假定相互作用对于评估其作为抗肿瘤介质的潜在作用至关重要。这项工作描述了回收所选蘑菇子实体中所含的可溶性β-葡聚糖所需的许多分离和纯化步骤。一旦成功纯化,小胶质细胞就会被激活以增强其炎症表型。小鼠胶质母细胞瘤细胞(GL261)涂有不同的小胶质细胞条件培养基,先前用这些提取物处理,然后评估其对肿瘤细胞行为的影响。有趣的是,我们实验室的初步研究(数据未显示)揭示了促炎小胶质细胞如何减缓肿瘤细胞迁移和侵袭特性,不仅在胶质母细胞瘤细胞中,而且在其他癌细胞系中。这项多学科工作可能为肿瘤学研究人员提供有用的工具,以测试能够增强许多不同类型肿瘤免疫反应的有前途的化合物。

Protocol

本协议中描述的四种不同的蘑菇变体是从商业来源获得的(见 材料表)。 1. 真菌β-葡聚糖的分离 可溶性蘑菇多糖的提取和分离注意:可溶性蘑菇多糖(SMP)是根据 图1所示的示意性程序获得的。在蒸馏水中轻轻冲洗新鲜的 P. ostreatus, P. djamor, H. erinaceus和 G. lucidum 子实体(约2,000克/…

Representative Results

成功纯化β-葡聚糖表1总结了从毛竹、黄杨、灵芝和猴头孢子实体中获得的MP、SMP和SβG的质量。 从真菌中获得的MP、SMP和SβG的基本组成(总碳水化合物、β-葡聚糖和蛋白质)如表2所示。这些结果表明该方案如何允许在SMP中检索大量蛋白质含量。然而,用α-淀粉酶/葡糖淀粉酶和蛋白酶酶处理减少了蛋白质的量并增加了β-葡聚糖浓?…

Discussion

这项工作描述了使用成熟的技术成功地从四种不同的真菌中分离、纯化和表征 SβG 的含量。结果表明,热水提取灰 、黄 和猴头孢杆菌的SMPs后,用α-淀粉酶、葡萄糖苷酶和蛋白酶水解处理后,α-葡聚糖和蛋白质的含量降低,从而显著丰富了纯SβGs的含量。

尽管如此,我们观察到大多数真菌β葡聚糖在纯化过程中不溶于水。该研究的主要?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

我们要感谢Vasiliki Economopoulos博士在ImageJ中测量富洛尔斯信号的内部脚本。我们还要感谢CITIUS(塞维利亚大学)及其所有人员在示威期间的支持。这项工作得到了塞维利亚大学的西班牙FEDER I + D + i-USE,US-1264152和科学,创新和大学部PID2021-126090OA-I00的支持。

Materials

8-well chamber slides Thermo Fisher, USA 171080
Air-drying oven J.P. Selecta S.A., Spain 2000210
Albumin Sigma-Aldrich, St. Louis A7030
Alcalase Novozymes, Denmark protease
Alexa Fluor 488 Thermofisher, USA A32731
Alexa Fluor 647 Thermofisher, USA A32728
Blade mill Retsch, Germany  SM100
Bovine Serum Albumin MERK, Germany A9418
Cellulose tubing membrane Sigma-Aldrich, St. Louis D9402
Centrifuge MERK, Germany Eppendorf, 5810R
Colocalisation pluggins ImageJ (https://imagej.net/imaging/colocalization-analysis )
DAPI MERK, Germany 28718-90-3
Dextrans Pharmacosmos, Holbalk, Denmark Dextran 410, 80, 50
Dulbecco´s modified Eagle´s medium, Gluta MAXTM Gibco, Life Technologies, Carlsbad, CA, USA 10564011
Extenda (α- Amylase/Glucoamylase) Novozymes, Denmark
Fetal bovine serum Gibco, Life Technologies, Carlsbad, CA, USA A4736301
FT-IR spectromete Bruker-Vertex, Switzerland VERTEX 70v
Graphing and analysis software GraphPad Prism (GraphPad Software, Inc.)
H2SO4
HPLC system Waters Corp, Milford, MA, USA Waters 2695 HPLC
Incubator Eppedorf Galaxy 170S
Mass Spectometer Q Exactive GC, Thermo Scientific 725500
Paraformaldehyde MERK, Germany P6148
Penicillin/streptomycin Sigma-Aldrich, St. Louis P4458
pH meter Crison, Barcelona, Spain Basic 20
Phosphate-buffered saline Gibco, Life Technologies, Carlsbad, CA, USA 1010-015
Rabbit Cleaved Caspase-3 (Asp175) Antibody Abcam, UK ab243998
Rat Ki-67 Monoclonal Thermofisher, USA MA5-14520
Rotary evaporator Büchi Ibérica S.L.U., Spain El Rotavapor R-100
Ultra-hydrogel linear gel-filtration column (300 mm x 7.8 mm) Waters Corp, Milford, MA, USA WAT011545
UV-Visible spectrophotometer Amersham Bioscience, UK Ultrospec 2100 pro
VectaMount Vector Laboratories, C.A, USA H-5000-60
Water bath J.P. Selecta S.A., Spain
Zeiss LSM 7 DUO Confocal Microscope System. Zeiss, Germany
β-glucan Assay Kit Megazyme, Bray, Co. Wicklow, Ireland K-BGLU
β-glucans Setas y Hongos del Sur, S.L. Supplied the four variants of mushrooms

Referenzen

  1. Aldape, K., et al. Challenges to curing primary brain tumours. Nature Reviews. Clinical Oncology. 16 (8), 509-520 (2019).
  2. Himes, B. T., et al. Immunosuppression in glioblastoma: current understanding and therapeutic implications. Frontiers in Oncology. 11, 770561 (2021).
  3. Ma, J., Chen, C. C., Li, M. Macrophages/microglia in the glioblastoma tumor microenvironment. International Journal of Molecular Sciences. 22 (11), 5775 (2021).
  4. Sevenich, L. Turning "cold" into "hot" tumors-opportunities and challenges for radio-immunotherapy against primary and metastatic brain cancers. Frontiers in Oncology. 9, 163 (2019).
  5. Niesel, K., et al. The immune suppressive microenvironment affects efficacy of radio-immunotherapy in brain metastasis. EMBO Molecular Medicine. 13 (5), e13412 (2021).
  6. McCann, F., Carmona, E., Puri, V., Pagano, R. E., Limper, A. H. Macrophage internalization of fungal beta-glucans is not necessary for initiation of related inflammatory responses. Infection and Immunity. 73 (10), 6340-6349 (2005).
  7. Vetvicka, V., Teplyakova, T. V., Shintyapina, A. B., Korolenko, T. A. Effects of medicinal fungi-derived β-glucan on tumor progression. Journal of Fungi. 7 (4), 250 (2021).
  8. Chan, G. C. F., Chan, W. K., Sze, D. M. Y. The effects of beta-glucan on human immune and cancer cells. Journal of Hematology & Oncology. 2, 25 (2009).
  9. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry. 193 (1), 265-275 (1951).
  10. Klaus, A., et al. Antioxidative activities and chemical characterization of polysaccharides extracted from the basidiomycete Schizophyllum commune. Food Science and Technology. 44 (10), 2005-2011 (2011).
  11. Soto, M. S., et al. STAT3-mediated astrocyte reactivity associated with brain metastasis contributes to neurovascular dysfunction. Krebsforschung. 80 (24), 5642-5655 (2020).
  12. Chromý, V., Vinklárková, B., Šprongl, L., Bittová, M. The Kjeldahl method as a primary reference procedure for total protein in certified reference materials used in clinical chemistry. I. A review of Kjeldahl methods adopted by laboratory medicine. Critical Reviews in Analytical Chemistry. 45 (2), 106-111 (2015).
  13. Waterborg, J. H., Matthews, H. R. The Lowry method for protein quantitation. Methods in Molecular Biology. 32, 1-4 (1994).
  14. Zhang, L., et al. Characterization and antioxidant activities of polysaccharides from thirteen boletus mushrooms. International Journal of Biological Macromolecules. 113, 1-7 (2018).
  15. Barbosa, J. S., et al. Obtaining extracts rich in antioxidant polysaccharides from the edible mushroom Pleurotus ostreatus using binary system with hot water and supercritical CO2. Food Chemistry. 330, 127173 (2020).
  16. Ma, Y. H., et al. Assessment of polysaccharides from mycelia of genus Ganoderma by mid-infrared and near-infrared spectroscopy. Scientific Reports. 8 (1), 10 (2018).
  17. Nie, L., et al. Immune-enhancing effects of polysaccharides MLN-1 from by-product of Mai-luo-ning in vivo and in vitro. Food and Agricultural Immunology. 30 (1), 369-384 (2019).
  18. Cerletti, C., Esposito, S., Iacoviello, L. Edible mushrooms and beta-glucans: impact on human health. Nutrients. 13 (7), 2195 (2021).
  19. Klaus, A., et al. The edible mushroom Laetiporus sulphureus as potential source of natural antioxidants. International Journal of Food Sciences and Nutrition. 64 (5), 599-610 (2013).
  20. Kozarski, M., et al. Dietary polysaccharide extracts of Agaricus brasiliensis fruiting bodies: chemical characterization and bioactivities at different levels of purification. Food Research International. 64, 53-64 (2014).
  21. Ayimbila, F., Keawsompong, S. Functional composition and antioxidant property of crude polysaccharides from the fruiting bodies of Lentinus squarrosulus. 3 Biotech. 11 (1), 7 (2021).
  22. de Azambuja, E., et al. Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients. British Journal of Cancer. 96 (10), 1504-1513 (2007).
  23. Holubec, H., et al. Assessment of apoptosis by immunohistochemical markers compared to cellular morphology in ex vivo-stressed colonic mucosa. The Journal of Histochemistry and Cytochemistry. 53 (2), 229-235 (2005).
  24. Borges, G. M., et al. Extracellular polysaccharide production by a strain of Pleurotus djamor isolated in the south of Brazil and antitumor activity on Sarcoma 180. Brazilian Journal of Microbiology. 44 (4), 1059-1065 (2014).
  25. Sohretoglu, D., Huang, S. Ganoderma lucidum polysaccharides as an anti-cancer agent. Anti-Cancer Agents in Medicinal Chemistry. 18 (5), 667-674 (2018).

Play Video

Diesen Artikel zitieren
Folgado-Dorado, C., Caracena-De La Corte, J., Aguilera-Velázquez, J. R., Santana-Villalona, R., Rivera-Ramos, A., Carbonero-Aguilar, M. P., Talaverón, R., Bautista, J., Sarmiento Soto, M. Isolation and Purification of Fungal β-Glucan as an Immunotherapy Strategy for Glioblastoma. J. Vis. Exp. (196), e64924, doi:10.3791/64924 (2023).

View Video