Summary

重复经颅磁刺激对大鼠大脑的单边半球

Published: October 22, 2016
doi:

Summary

We applied repetitive transcranial magnetic stimulation (rTMS) to the unilateral hemisphere of rat brain, by placing a 25-mm figure-8 coil 1 cm lateral to the vertex on the biauricular line and angulating the coil by 45°. An in-house water cooling system was used for rTMS for more than 20 min.

Abstract

Previous rodent models of repetitive transcranial magnetic stimulation (rTMS) adopted whole-brain stimulation instead of unilateral hemispheric rTMS, which is unlike the protocols used for human subjects. We report a successful application of rTMS to the unilateral hemisphere of rat brain. The rTMS was delivered with a low-frequency (1 Hz), high-frequency (20 Hz), or sham stimulation protocol to one side of the brain by using a small 25-mm figure-8 coil. We placed the center of the coil 1 cm lateral to the vertex on the biauricular line and angulated the coil 45° to the ground to minimize a potential direct effect of rTMS on the contralateral cortex. We also used an in-house water cooling system to enable repetitive magnetic stimulation for more than 20 min, even at a 20-Hz stimulation frequency. Increases in the transcriptions of immediate early genes (Arc, Junb, and Egr2) were greater after rTMS than after sham stimulation. After 5 consecutive days of 20-min 1-Hz rTMS, bdnf mRNA expression was significantly higher in stimulated cortex than in contralateral side. The model presented herein will elucidate the molecular mechanisms of rTMS by allowing analysis of the inter-hemispheric difference in its effect.

Introduction

重复经颅磁刺激(rTMS治疗),用于非侵入性脑刺激和神经调节的工具,已经在各种病症的治疗被应用于如中枢性疼痛1,2,抑郁心情 ,偏头痛4,甚至中风5-7。通过线圈快速变化的电流在磁头诱导对大脑皮层和所得神经元激活电场。大脑皮层的兴奋性可以通过磁刺激,从而可以持续超过30分钟的刺激终止后进行调制。

后效应的磁刺激的建议的机制包括长时程增强/抑郁症样作用8,在离子平衡9短暂移位,和代谢改变10。此外,迪拉扎罗 。表明,间歇THETA突发刺激影响兴奋性突触输入到锥体束神经元,无论是在刺激与对侧大脑半球11。

显著的限制,但是,已经从台上证据转化为临床情况阻碍了研究人员。首先,在以前的动物研究中,磁刺激用于全脑刺激12。全脑刺激是从人类研究9所使用的协议完全不同。另一个问题是与刺激的持续时间有关。这至少部分归因于一个事实,即一个有效的冷却系统是在过去的小线圈不可用。

近年来,精液文章已经发表建议用于克服对小动物大脑中的磁刺激实验这些困难的方式。由这些动物模型中,据透露,在大鼠脑还示出了响应于低频磁刺激13相似皮质兴奋的变化作为人类。更重要的是,经颅磁刺激的细胞和分子机制越来越蓓NG使用经颅磁刺激的动物模型研究。一个典型的例子是,一个独特的类型抑制中间神经元的被称为是间歇THETA爆发刺激14最为敏感。经颅磁刺激的啮齿类动物模型,因此,探索对颅磁刺激引起的变化的分子基础备受追捧的问题提供了新的机遇。如果经颅磁刺激的小动物模型可以更加实验室使用,它可能会大大加快,并在这方面加强研究。

我们现在描述如何将磁刺激应用于大鼠脑,将先前的工作15的延伸的单方面半球。刺激诱导的变化通过使用微正电子发射断层扫描(PET)和mRNA微阵列来研究在受刺激大脑皮质的rTMS引起的变化进行评价。

Protocol

所有的动物使用的程序进行审查,并由首尔大学医院的机构动物护理和使用委员会批准。 1.实验装置动物准备允许雄性Sprague-Dawley大鼠1周开始实验前,以适应新的环境。 注意:虽然8周龄大鼠在本研究中所使用的,显影或成人大脑可以根据研究假设来选择。 吸入麻醉诱导诱导并用5%异氟醚分别经由室与鼻锥体溶解在40%/ 60%和25%/ 75%氧/氮,2?…

Representative Results

十五8周龄雄性SD大鼠被用于MT确定一个独立的评判间可靠性分析。使用肌肉抽搐的触诊的MT在所有可获得的大鼠和33.00±4.21%最大输出刺激(%MSO)和33.93±0.88%MSO,测量分别由两个独立的研究人员。奥特曼偏倚-0.93,以及协议的95%限为-9.13至7.26%。 在6个8周龄鼠(n =在1赫兹的rTMS 4,和n = 2的假rTMS组中)微PET试验,18 F-F…

Discussion

这项研究的主要目的是介绍单边rTMS治疗的动物模型。虽然单边刺激是人类颅磁刺激研究的最根本的特征之一,许多研究都没有小动物采用。然而,罗滕贝格等人 15记录,使用具有20毫米的外瓣直径的8字形线圈100%MT的刺激对侧的MEP,而刺激112.5%和133.3%的MT产生同侧以及对侧的MEP。这可能是因为大感应电场可影响对侧半球。因此,我们的研究是此以前的工作15,24的延伸?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-313-E00458). The authors thank Jin-Joo Lee for the technical assistance.

Materials

Homeothermic blanket with a rectal probe Harvard apparatus 507222F
Isoflurane (Forane sol.) Choongwae
Propofol (Provive Inj. 1% 20ml) Claris Lifesciences
Repetitive magnetic stimulator (Magstim Rapid2) Magstim Company Ltd
25 mm figure-of-8 coil Magstim Company Ltd 1165-00
PET-CT GE Healthcare
QIAzol Lysis Reagent Qiagen (US Patent No. 5,346,994)
RNeasy Lipid Tissue Mini Kit Qiagen 74804
RNeasy Mini Spin Columns Qiagen (Mat No. 1011708)
Agilent 2100 Bioanalyzer Agilent Technologies
Ambion Illumina RNA amplification kit Ambion
Nanodrop Spectrophotometer NanoDrop ND-1000
Illumina RatRef-12 Expression BeadChip Illumina, Inc.
Amersham fluorolink streptavidin-Cy3 GE Healthcare Bio-Sciences

Referenzen

  1. Lefaucheur, J. P., et al. Neurogenic pain relief by repetitive transcranial magnetic cortical stimulation depends on the origin and the site of pain. J Neurol Neurosurg Psychiatry. 75 (4), 612-616 (2004).
  2. Hirayama, A., et al. Reduction of intractable deafferentation pain by navigation-guided repetitive transcranial magnetic stimulation of the primary motor cortex. Pain. 122 (1-2), 22-27 (2006).
  3. O’Reardon, J. P., et al. Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry. 62 (11), 1208-1216 (2007).
  4. Brighina, F., et al. Facilitatory effects of 1 Hz rTMS in motor cortex of patients affected by migraine with aura. Exp Brain Res. 161 (1), 34-38 (2005).
  5. Lefaucheur, J. P. Stroke recovery can be enhanced by using repetitive transcranial magnetic stimulation (rTMS). Neurophysiol Clin. 36 (3), 105-115 (2006).
  6. Khedr, E. M., Ahmed, M. A., Fathy, N., Rothwell, J. C. Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology. 65 (3), 466-468 (2005).
  7. Fregni, F., et al. A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients. Stroke. 37 (8), 2115-2122 (2006).
  8. Pascual-Leone, A., Valls-Sole, J., Wassermann, E. M., Hallett, M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain. 117 (4), 847-858 (1994).
  9. Ridding, M. C., Rothwell, J. C. Is there a future for therapeutic use of transcranial magnetic stimulation). Nat Rev Neurosci. 8 (7), 559-567 (2007).
  10. Valero-Cabre, A., Payne, B. R., Pascual-Leone, A. Opposite impact on 14C-2-deoxyglucose brain metabolism following patterns of high and low frequency repetitive transcranial magnetic stimulation in the posterior parietal cortex. Exp Brain Res. 176 (4), 603-615 (2007).
  11. Di Lazzaro, V., et al. The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex. J Physiol. 586 (16), 3871-3879 (2008).
  12. Post, A., Keck, M. E. Transcranial magnetic stimulation as a therapeutic tool in psychiatry: what do we know about the neurobiological mechanisms. J Psychiatr Res. 35 (4), 193-215 (2001).
  13. Muller, P. A., Dhamne, S. C., Vahabzadeh-Hagh, A. M., Pascual-Leone, A., Jensen, F. E., Rotenberg, A. Suppression of motor cortical excitability in anesthetized rats by low frequency repetitive transcranial magnetic stimulation. PLoS One. 9 (3), 91065 (2014).
  14. Funke, K., Benali, A. Modulation of cortical inhibition by rTMS – findings obtained from animal models. J Physiol. 589 (18), 4423-4435 (2011).
  15. Rotenberg, A., et al. Lateralization of forelimb motor evoked potentials by transcranial magnetic stimulation in rats. Clin Neurophysiol. 121 (1), 104-108 (2010).
  16. Beom, J., Kim, W., Han, T. R., Seo, K. S., Oh, B. M. Concurrent use of granulocyte-colony stimulating factor with repetitive transcranial magnetic stimulation did not enhance recovery of function in the early subacute stroke in rats. Neurol Sci. 36 (5), 771-777 (2015).
  17. Haghighi, S. S., Green, K. D., Oro, J. J., Drake, R. K., Kracke, G. R. Depressive effect of isoflurane anesthesia on motor evoked potentials. Neurosurgery. 26, 993-997 (1990).
  18. Fishback, A. S., Shields, C. B., Linden, R. D., Zhang, Y. P., Burke, D. The effects of propofol on rat transcranial magnetic motor evoked potentials. Neurosurgery. 37 (5), 969-974 (1995).
  19. Rohde, V., Krombach, G. A., Baumert, J. H., Kreitschmann-Andermahr, I., Weinzierl, M., Gilsbach, J. M. Measurement of motor evoked potentials following repetitive magnetic motor cortex stimulation during isoflurane or propofol anaesthesia. Br J Anaesth. 91 (4), 487-492 (2003).
  20. Lee, S. A., Oh, B. M., Kim, S. J., Paik, N. J. The molecular evidence of neural plasticity induced by cerebellar repetitive transcranial magnetic stimulation in the rat brain: a preliminary report. Neurosci Lett. 575, 47-52 (2014).
  21. Fu, Y. K., et al. Imaging of regional metabolic activity by (18)F-FDG/PET in rats with transient cerebral ischemia. Appl Radiat Isot. 67 (18), 1743-1747 (2009).
  22. Silveyra, P., Catalano, P. N., Lux-Lantos, V., Libertun, C. Impact of proestrous milieu on expression of orexin receptors and prepro-orexin in rat hypothalamus and hypophysis: actions of Cetrorelix and Nembutal. Am J Physiol Endocrinol Metab. 292 (3), 820-828 (2007).
  23. Zidek, N., Hellmann, J., Kramer, P. J., Hewitt, P. G. Acute hepatotoxicity: a predictive model based on focused illumina microarrays. Toxicol Sci. 99 (1), 289-302 (2007).
  24. Hsieh, T. H., Dhamne, S. C., Chen, J. J., Pascual-Leone, A., Jensen, F. E., Rotenberg, A. A new measure of cortical inhibition by mechanomyography and paired-pulse transcranial magnetic stimulation in unanesthetized rats. J Neurophysiol. 107 (3), 966-972 (2012).
  25. Salvador, R., Miranda, P. C. Transcranial magnetic stimulation of small animals: a modeling study of the influence of coil geometry, size and orientation. Conf Proc IEEE Eng Med Biol Soc. 2009, 674-677 (2009).
  26. Parthoens, J., Verhaeghe, J., Servaes, S., Miranda, A., Stroobants, S., Staelens, S. Performance Characterization of an Actively Cooled Repetitive Transcranial Magnetic Stimulation Coil for the Rat. Neuromodulation. , (2016).
  27. Toro, R., et al. Brain size and folding of the human cerebral cortex. Cereb Cortex. 18 (10), 2352-2357 (2008).

Play Video

Diesen Artikel zitieren
Beom, J., Lee, J. C., Paeng, J. C., Han, T. R., Bang, M. S., Oh, B. Repetitive Transcranial Magnetic Stimulation to the Unilateral Hemisphere of Rat Brain. J. Vis. Exp. (116), e54217, doi:10.3791/54217 (2016).

View Video