DNA tiling is an effective approach to make programmable nanostructures. We describe the protocols to construct complex two-dimensional shapes by the self-assembly of single-stranded DNA tiles.
Current methods in DNA nano-architecture have successfully engineered a variety of 2D and 3D structures using principles of self-assembly. In this article, we describe detailed protocols on how to fabricate sophisticated 2D shapes through the self-assembly of uniquely addressable single-stranded DNA tiles which act as molecular pixels on a molecular canvas. Each single-stranded tile (SST) is a 42-nucleotide DNA strand composed of four concatenated modular domains which bind to four neighbors during self-assembly. The molecular canvas is a rectangle structure self-assembled from SSTs. A prescribed complex 2D shape is formed by selecting the constituent molecular pixels (SSTs) from a 310-pixel molecular canvas and then subjecting the corresponding strands to one-pot annealing. Due to the modular nature of the SST approach we demonstrate the scalability, versatility and robustness of this method. Compared with alternative methods, the SST method enables a wider selection of information polymers and sequences through the use of de novo designed and synthesized short DNA strands.
Previous nucleic acid self-assembly work1-25 has led to the successful construction of a variety of complex structures, including DNA2–5,8,10–13,17,23 or RNA7,22 periodic3,4,7,22 and algorithmic5 two-dimensional lattices, ribbons10,12 and tubes4,12,13, 3D crystals17, polyhedra11 and finite, 2D shapes7,8. A particularly effective method is scaffolded DNA origami, whereby a single scaffold strand is folded by many short auxiliary staple strands to form a complex shape9,14–16,18–21,25.
We recently reported a method for constructing discrete nanostructures with prescribed 2D shapes using single-stranded tiles (SST), and demonstrated structures with complexity comparable to DNA origami26. This article is an adaptation of our earlier work26 and describes detailed protocols for arranging individually addressable SSTs into sophisticated finite 2D shapes with precisely prescribed dimensions (widths and lengths) and morphologies. One key advantage of the SST method is its modularity. Every component SST of a structure serves as a modular construction unit in the assembly, and different subsets of these SSTs produce distinct shapes. Thus, we established a general platform to construct nanostructures with prescribed sizes and shapes from short, synthetic DNA strands.
SSTs contain four domains, each 10 or 11 nucleotides long (Figure 1A). The SSTs bind such that their parallel helices create a DNA lattice held together by crossover linkages. Each crossover is the phosphate between domains 2 and 3. The phosphate is stretched artificially in the diagrams for visual clarity. The crossovers are spaced two helical turns (21 bases) apart (Figure 1B). The composite rectangles are referred to by their dimensions in the number of helices and helical turns. For example, a rectangle that is six helices wide and eight helical turns long is referenced as a 6H × 8T rectangle. SSTs can be left out, added, or otherwise rearranged to create structures of arbitrary shapes and sizes (Figure 1C). For instance, a rectangular design can be rolled into a tube with a desired length and radius (Figure 1D).
Alternatively, the rectangular SST lattice can be viewed as a molecular canvas made up of SST pixels, each 3 nm by 7 nm. In this study, we use a molecular canvas of 310 full-length internal SSTs, 24 full-length SSTs making up the left and right boundaries, and 28 half-length SSTs forming the top and bottom boundaries. The canvas has 24 double helices linked by crossovers and each helix contains 28 helical turns (294 bases) and is therefore referred to as a 24H × 28T rectangular canvas. The 24H × 28T canvas has a molecular weight similar to that of a DNA origami structure created from an M13 phage scaffold.
1. DNA Sequence Design
2. Preparation of the Molecular Canvas
3. Atomic Force Microscopy Imaging
4. Sample Preparation for Streptavidin Labeling
5. Atomic Force Microscopy For Streptavidin Labeling
6. Converting A Rectangle Into A Tube
7. Transmission Electron Microscope Imaging
8. Constructing Arbitrary Shapes Using the Molecular Canvas
9. Optional: Robot Automation Of Shape Design and Liquid Mixing
10. Rectangles and Tubes Across Different Scales
The self-assembly of SSTs (Figure 1) will yield a 24H × 28T rectangle, as illustrated in Figure 2. DNA sequences for the different SSTs can be modified/optimized to enable streptavidin labeling (Figure 3 and 4), the transformation of a rectangle into a tube (Figure 5), the programmable self-assembly of SSTs to form tubes and rectangles of varying sizes (Figure 10), and the construction of 2D arbitrary shapes using the molecular canvas (Figure 8). Two designs (domain substitution design and edge protector design) were tested as solutions to aggregation along exposed domains of arbitrary shapes (Figure 7). Both designs have comparable gel yield and structural integrity, but the edge protector design is more cost effective since it requires fewer auxiliary species (Figure 6). Strand picking and mixing can be automated, as shown in Figures 9 to reduce human error and save time.
Figure 1. Self-assembly of Molecular Shapes Using Single-stranded Tiles. (A) The canonical SST motif, adapted from12. (B) Left and middle: Two depictions of assembled SSTs. Inner SSTs have a full length of 42 bases and are labeled “U” while boundary SSTs have 21 bases and are labeled “L”. In the left diagram, colors distinguish different domains. In the middle diagram, colors distinguish different strands. Right: A schematic of the brick wall view of SST structures. Thick bricks are full SSTs and thin bricks are boundary SSTs. Rounded edges indicate no complementary pairing. As in the middle figure, colors distinguish individual tiles. In all diagrams, each tile has a unique sequence. (C) Withholding an appropriate selection of strands from the SST collection making up the rectangle design in figure b results in the formation of a different desired shape such as a triangle (left) or a rectangular ring (right). (D) The design of a tube with a predetermined width and length. (E) Given a pre-synthesized pool of SST sequences (top), arbitrary shapes (bottom) can be designed by choosing a subset of strands to use in the strand mixture (dark blue pixels) and eliminating the rest (light blue pixels). This figure has been modified from a previously published figure26. Please click here to view a larger version of this figure.
Figure 2. Design and AFM Image of the 24H × 28T Rectangle. (A) Schematic drawing of the 24H × 28T rectangle. A zoomed-in view is also shown for the detailed local structure. The individual SST segment arrangement is either 10 nt – 11 nt – 11 nt – 10 nt (e.g., a2.13-b2.13-a1.13*-b1.12*) or 11 nt – 10 nt- 10 nt – 11 nt (e.g., a3.12-b3.12-a2.13*-b2.12*). Triangles on the left hand side of the rectangle indicate rows with a 10nt-11nt-11nt-10nt SST arrangement; the other internal SSTs have 11 nt – 10 nt -10 nt- 11 nt instead (nt is an acronym for nucleotide). Since the 24H × 28T SST rectangle has similar dimensions to a DNA origami structure, the criterion introduced in the DNA origami work and consider an SST rectangle “well-formed” if it has no defect in the expected outline greater than 15 nm in diameter was adopted. Additionally, a “well-formed” rectangle structure has no holes in its interior larger than 10 nm in diameter was required. Following the above criteria, a “well-formation” ratio of 55% (N = 163) was obtained. A red asterisk (*) indicates the bottom left corner of the rectangle here. (B) 2% native agarose gel electrophoresis. U, unpurified; P, purified (by gel extraction from lane U). (C) AFM image of the lattice structure (scanning size: 2 μm×2 μm). This figure has been modified from a previously published figure26. Please click here to view a larger version of this figure.
Figure 3. Boundary Labeling of 24H × 28T Rectangle. (A) Schematic drawing of the specific biotin-labeled 24H × 28T rectangle. The strands highlighted in blue are the handle strands. The strands highlighted in red are the anti-handle strands labeled with 3' biotin (black dots). Streptavidin is depicted as an orange ball. (B) AFM image before adding streptavidin (scanning size: 1 μm×1 μm). (C) AFM image after adding streptavidin (scanning size: 1 μm×1 μm). Inset, a zoomed-in view showing successful labeling. Note that streptavidin appeared as either white dots or stripes due to their raised heights. This figure has been modified from a previously published figure26. Please click here to view a larger version of this figure.
Figure 4. Internal Labeling of 24H × 28T Rectangle. (A) Schematic drawing of the specific biotin labeled 24H × 28T rectangle. The strands highlighted in blue are the handle strands. The strands highlighted in red are the anti-handle strands labeled with 3' biotin (black dots). Streptavidin is depicted as an orange ball. (B) AFM image before adding streptavidin (scanning size: 1 μm×1 μm). (C) AFM image after adding streptavidin (scanning size: 1 μm×1 μm). Inset, a zoomed-in view showing successful labeling. Note that streptavidin appeared either as white dots or stripes due to the raised heights. This figure has been modified from a previously published figure26. Please click here to view a larger version of this figure.
Figure 5. Design and TEM Image of the 24H × 28T Tube. (A) Schematic drawing of the 24H × 28T barrel. Two zoomed-in views at the top and the bottom show detailed segment identities. Note that segments a24.x* (e.g., a24.13*) and b24.x* (e.g., b24.12*) of the top row are complementary to segments a24.x (e.g., a24.13) and b24.x (e.g., b24.12) of the bottom row; such complementarity is expected to result in the formation of the tubular structure. (B) 2% native agarose gel electrophoresis. U, unpurified; P, purified (by gel extraction from lane U). (C) TEM image of the barrel structure (scale bar: 100 nm). This figure has been modified from a previously published figure26. Please click here to view a larger version of this figure.
Figure 6. Two Designs to Prevent Aggregation Caused by Exposed Sticky Domains. (A) A side-by-side demonstration of two methods to cover exposed domains. The unpaired sticky domain (domain 4) is indicated with a red, dashed box. Design 1 is the domain substitution design, in which the unpaired domain is substituted by a poly-T domain (shown in red and labeled “T”). Design 2 is the edge protector design, which involves covering the unpaired domain with an edge protector strand (shown in red and labeled “T-4*”). The edge protector strand is composed of a poly-T section and a complement to the exposed domain. (B) The different possible boundary configurations associated with domain substitution (design 1). There are 14 different ways an internal SST (shown in blue) can leave an exposed domain or domains. The appropriate strand substitutions are shown in red for each situation. (C) The edge protector design (design 2). One internal SST (blue) requires only four edge protector strands (red) to cover exposed domains using this design. This figure has been modified from a previously published figure26. Please click here to view a larger version of this figure.
Figure 7. Two Designs for the SST Triangle. (A) and (B) depict schematics based on design 1 (domain substitution) and design 2 (edge protector) in Figure 8, respectively. A poly-T region (T10 or T11 in the figure) is depicted as a rounded corner in the block diagram. The inset shows a magnified view of the structure indicated with the dashed box. Scale bars, 100 nm. (C) and (D) are the AFM images. This figure has been modified from a previously published figure26.
Figure 8. Diagrams and AFM Images of 100 Different Shapes. Structure designs are displayed in the top panels. Light blue coloring indicates the canvas strands left out of the mixture while dark blue coloring indicates the strands included. For clarity, edge protector strands are omitted. A corresponding AFM image of each structure is shown below its design. Each image is 150 nm×150 nm in area. There are 100 unique shapes. Included are 10 Arabic numerals, the 26 capital letters of the Latin alphabet, 23 punctuation marks and keyboard symbols, 10 emoticons, 9 astrological symbols, 6 Chinese characters, and several miscellaneous symbols. This figure has been modified from a previously published figure26. Please click here to view a larger version of this figure.
Figure 9. Robot Automation Flow Diagram. This diagram depicts the workflow used to automate the mixing process. First, a custom MATLAB program is used to design the desired shape. Once again, dark blue rectangles indicate the strands to be included in the mixture. After the design is completed, the program outputs a set of pipetting instructions for the robotic liquid handler. The robot pipettes the correct concentrations of the appropriate strands for one particular shape into a plate well. The mixture then undergoes one pot annealing, followed by AFM imaging of the resulting shapes. (This figure has been modified from a previously published figure26). Please click here to view a larger version of this figure.
Figure 10. Self-Assembly of Rectangles and Tubes Across Different Scales. (A) AFM images of SST rectangles with the following designed dimensions (from left to right): 4H × 4T, 6H × 7T, 10H × 10T, 12H × 14T, 18H × 20T, 24H × 28T, and 36H × 34T. (B) The molecular weights of the structures are on a logarithmic scale. The asterisk indicates the weight of a typical M13 DNA origami structure as a reference. (C) TEM images of SST tubes with the following designed dimensions (from left to right): 8H × 28T, 8H × 55T, 8H × 84T, 24H × 28T, and 12H ×177T. All scale bars show 100 nm. This figure has been modified from a previously published figure26. Please click here to view a larger version of this figure.
In the structure formation step, it is important to keep an appropriate concentration of magnesium cations (e.g., 15 mM) in the DNA strand mixture to self-assemble DNA nanostructures. Similarly, in the agarose gel characterization/purification step, it is important to keep an appropriate magnesium cation concentration (e.g., 10 mM) in the gel and the gel running buffer to retain the DNA nanostructures during electrophoresis. For the 24H×28T rectangle structure, we tested annealing in different Mg++ concentrations and found that the structure typically formed in the range of 10 – 30 mM Mg++ (with the best formation yield with around 20 mM Mg++).
Unlike the scaffolded origami structure, the SST structure has a modular architecture. Different shapes can be designed from the same canvas by selecting the appropriate subset of SST tiles. Additionally, the SST structure is assembled from only short synthetic DNA strands and does not involve a long scaffold that is used in the origami approach. Therefore, the size of the SST structure is not restricted by the length of the available scaffold. However, while DNA origami approach can often be optimized to produce either folded structures or unfolded monomers, SST may result in partially formed structures and thus may require gel purification for subsequent use. Additionally, due to the lack of a scaffold strand, an SST structure can be more “brittle” than its DNA origami counterpart. Both the SST approach and the DNA origami approach are fast evolving, and a user is advised to choose an approach that best suits his or her particular functional needs.
It is striking that hundreds of small monomers mediated only by local binding interactions can self-assemble into a prescribed global shape, as demonstrated by the SST approach. The fundamental principles shown in the SST approach should be generalizable to materials beside the DNA strands, and the basic method described in this article, after appropriate modification, should enable the constructions of complex structures self-assembled from diverse materials.
The authors have nothing to disclose.
This work was funded by the Office of Naval Research Young Investigator Program Award N000141110914, Office of Naval Research Grant N000141010827, NSF CAREER Award CCF1054898, NIH Director’s New Innovator Award 1DP2OD007292 and a Wyss Institute for Biologically Inspired Engineering Faculty Startup Fund (to P.Y.) and Tsinghua-Peking Center for Life Sciences Startup Fund (to B. W.).
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
DNA Strands | Integrated DNA Technology | Section 3.1 | |
SYBR Safe DNA gel stain | Invitrogen | S33102 | Section 3.4.2 |
Freeze'N Squeeze DNA Gel Extraction Spin Columns | BIO-RAD | 731-6166 | Section 3.6 |
Bruker's Sharp Nitride Lever Probes | Bruker AFM Probes | SNL10 | Section 4.3 |
Safe Imager 2.0 Blue Light Transilluminator | Invitrogen | G6600 | Section 3.6 |
Centrifuge 5430R | Eppendorf | 5428 000.414 | Section 3.6 |
Transmission Electron Microscope | Jeol | Jem 1400 | Section 7.4 |
Multimode 8 | Veeco | Section 4 | |
Typhoon FLA 9000 Laser Scanner | GE Heathcare Life Sciences | 28-9558-08 | Section 3.5 |
Ultrapure Distilled water | Invitrogen | 10977-023 | Section 3.7.1 |
Mica disk | SPI Supplies | 12001-26-2 | Section 4.1 |
Steel mounting disk | Ted Pella, Inc. | 16218 | Section 4.1 |
carbon coated copper grid for TEM | Electron Microscopy Sciences | FCF400-Cu | Section 7.2 |
tweezers | Dumont | 0203-N5AC-PO | Section 7.31 |
glow discharge system | Quorum Technologies | K100X | Section 7.2 |
DNA Engine Tetrad 2 Peltier Thermal Cycler | BIO-RAD | PTC–0240G | Section 3.3 |
Owl Easycast B2 Mini Gel Electrophoresis Systems | ThermoScientific | B2 | Section 3.4.3 |
Seekam LE Agarose 500G | Lonza | 50004 | Section 3.4.1 |
GeneRuler 1kb Plus DNA Ladder, Ready-To-Use 75-20000bp | ThermoScientific | SM1333 | Section 3.4.4 |
Nanodrop 2000c UV-vis Spectrophotometer | ThermoScientific | Section 3.7 | |
0.2 um filter | Corning Inc. | 431219 | Section 7.1.2 |