A subscription to JoVE is required to view this content.  Sign in or start your free trial.
Cell Cycle Analysis: Assessing CD4 and CD8 T Cell Proliferation After Stimulation Using CFSE Staining and Flow Cytometry
  • 00:02Concepts
  • 02:33Preparation of Materials and Dissection
  • 03:30CFSE Staining and T-Cell Stimulation
  • 05:16Cell Staining
  • 07:08Data Analysis
  • 09:05Results

세포주기 분석: 세포주기 CFSE 염색 및 유세포 분석을 사용한 자극 후 CD4 및 CD8 T 세포 증식 평가

English

Share

Overview

출처: 퍼셰 티보1,2,3,뮤니에 실뱅1,2,3,소피 노볼트4,레이첼 골럽1,2,3
1 림프포에이시스 단위, 면역학학과, 파스퇴르 연구소, 파리, 프랑스
2 INSERM U1223, 파리, 프랑스
3 유니버시테 파리 디드로, 소르본 파리 시테, 셀룰레 파스퇴르, 파리, 프랑스
4 흐름 세포측정플리트에서, 세포측정및 바이오마커 UtechS, 번역 과학 센터, 파스퇴르 연구소, 파리, 프랑스

세포 주기는 생활의 보편적인 과정입니다. 세포 주기 도중, 세포는 2개의 딸 세포로 분할하기 위하여 몇몇 수정을 겪습니다. 이 기계장치는 그것의 필요에 응하여 유기체의 생활 내내 생깁니다. 세포 분열과 배아 발달은 단세포 zygote에서 완전한 유기체를 생성합니다. 성인기 동안 세포 주기는 조직 수리와 같은 많은 중요한 생물학적 과정의 중심입니다.

세포 분열의 메커니즘은 세포가 최종 분열 전에 단계별 수정을 겪는 엄격하게 통제된 사건입니다. 사이클에 아직 없는 세포는 갭 0(G0)상에 있는 것으로 설명된다. 이 단계에서 세포는 정지로 간주됩니다. 세포가 순환하기 시작하면 갭 1 (G1),합성 (S), 갭 2 (G2)및 미토시스 (M)의 네 가지 뚜렷한 단계가 인식됩니다. G1 단계는 DNA 합성을 위한 세포에 의해 필요한 자원에 대 한 체크 포인트. 그런 다음, S 상이 발생하고 DNA 복제가 시작되고,G2 interphase, 세포가 분할하는 데 필요한 모든 요소를 제어하는 또 다른 검사점. 마지막으로, 세포는 미토시스에 들어가 두 개의 딸 세포로 나눕니다.

세포 분열은 많은 다른 생물학적 시스템에서 매우 유익한 매개 변수입니다. 면역학 분야에서 백혈구 증식의 분석은 면역 반응의 메커니즘을 나타낼 수 있습니다. 조사의 다른 도메인은 또한 세포 주기 분석에 의존합니다. 예를 들면, 종양 발달 도중 세포 주기의 분석은 암의 우리의 이해를 향상했습니다.

많은 형광염료는 이제 세포 증식을 추적할 수 있습니다. 이러한 염료는 화학 적 특성과 스펙트럼 특성에 다릅니다. 염료의 두 가지 종류가 존재: 단백질 염료 영구적으로 공유 결합을 형성 하 여 단백질과 결합, 그리고 막 염료 안정적으로 강력한 소수성 협회를 통해 세포 막 내에서 상호 작용. 체세포세포에 의한 면역세포 증식의 체외생체 내 연구는 세포 추적 염료(1, 2)의 두 클래스의 가장 일반적인 응용 분야 중 하나이다.

CFSE (Carboxyfluorescein succinimidyl 에스테르)는 세포를 나누는 것을 표시하는 형광 염료입니다. 처음에, 모든 세포는 염료의 동일한 양을 수신; 세포를 나누는 것은 그들의 두 딸 세포 사이에서 수신한 염료를 균등하게 분할합니다. 따라서, 세포 주기는 세포에서 염료 강도의 점진적인 감소에 선행될 수 있다. CFSE 염색은 CFSE 염색 정도(3)에 따라 세포의 현상과 기능적 특성화를 허용하는 고처리량, 형광계 기술인 기존의 다중 파라메트릭 흐름 세포측정법(3)에 선행된다.

다음 실험에서, 우리는 CFSE 염색 및 흐름 세포측정을 사용하여 CD3 자극에 따라 CD4+ 및 CD8+ T 세포의확산을 평가합니다.

Procedure

1. 준비 시작하기 전에 실험실 장갑과 적절한 보호 복을 착용하십시오. 먼저 세제로 모든 해부 도구를 살균한 다음 70%의 에탄올로 닦은 다음 철저히 닦아냅니다. 2% 태아 종아리 혈청(FCS)을 함유한 행크의 균형 잡힌 소금 용액(HBSS)을 50mL준비한다. 2. 해부 이산화탄소 전달 시스템을 사용하여 저산소증으로 마우스를 안?…

Results

In this experiment, we followed proliferation of splenic CD4+ and CD8+ T cells in in vitro culture. After 3 days, we did not see strong proliferation in both CD4+ and CD8+ T cells with or without stimulation. This is can be seen on the top panel of Figure 2 where the peaks of CSFE are not decreasing. However, after 5 days, we started to see proliferation in both populations, which is evident from decrease in the CSFE peaks (bottom panels, Figure 2). CFSE staining, clearly demonstrates that both CD4+ and CD8+ T cells were dividing more after stimulation. In addition, CD8+ T cells seemed to be slightly more proliferative than CD4+ T cells after 5 days of stimulation.

Figure 2
Figure 2: CD4 versus CD8 T cells proliferation. Proliferation of T cells at day 3 (top panel) and day 5 (bottom panel). Cell cycle is compared between CD4 and CD8 T cells with or without stimulation at two different days. CD4 and CD8 T cells proliferate more when stimulated. CD8 stimulated T cells proliferate more than CD4 stimulated T cells at day 5. Please click here to view a larger version of this figure.

Applications and Summary

Proliferation assays are often used in different fields such as immunology to determine the degree of activation of cells. It is also performed in oncology diagnostic to determine tumor aggressiveness in patients. CFSE staining is a useful technique to follow immune cell populations' proliferation over time. Other methods allow characterization of cell cycle. BrdU, an equivalent of CFSE is incorporated only in dividing cells. Recent Fucci mouse model even allows detection of cell cycle phases, without additional staining.

References

  1. Lyons, A. B. and Parish, C. R. Determination of lymphocyte division by flow cytometry. Journal of Immunological Methods. 171 (1): 131-37, (1994).
  2. Lyons, A. B. Analyzing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. Journal of Immunological Methods. 243 (1-2), 147-154, (2000).
  3. Quah, B. J., Warren H. S., and Parish, C. R. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nature Protocols. 2 (9): 2049-56, (2007).

Transcript

For most immunology studies, measuring proliferation of immune cells is a key step and the CFSE fluorescent dye-based method is commonly used. Proper cell division is important for immune cells since it regulates both levels and specificity of an immune response. For example, T-cells proliferate to identify and kill cancer cells and B-cells undergo cell division to produce specific antibodies. The overall premise of the CSFE assay involves staining the cells with the green fluorescent dye CFSE, which enters live cells and stably binds to the proteins inside, resulting in permanent labeling. As a result, when the dye-containing parent cell divides, each daughter cell gets half the fluorescence from the parent cell.

This process continues in the subsequent divisions with the dye intensity progressively decreasing with each division. At the desired endpoint, the fluorescence intensity of each cell is measured by flow cytometry. This data is then used to quantify the number and pattern of divisions the cells have gone through. As shown here, the cell population with the highest fluorescence are from the parent generation. The second highest belongs to the second generation and so on. The number of peaks determines the number of cell divisions.

In addition, if primary immune cells are used, specific cell populations, like the T-cells for example, can be labeled with a different colored fluorescence dye along with CFSE, and simultaneously identified using multicolor flow cytometry. The new data can be plotted on the same graph, now showing the T-cell sub-population with different CFSE staining intensities, by which the proliferation rate of the T-cells can be specifically analyzed. This video demonstrates the protocol for CFSE staining of mouse splenocytes, which are stimulated with an anti-CD3 antibody. This is followed by staining to label T-cells and flow cytometry to track their cell proliferation.

To begin, put on appropriate protective clothing and laboratory gloves. Next, wash a pair of forceps and dissecting scissors first with a detergent and then with 70% ethanol and then wipe them dry with a clean paper towel. Prepare 50 milliliters of Hank’s Balanced Salt Solution, or HBSS, with a 2% concentration of fetal calf serum, or FCS, by combining one milliliter of FCS with 49 milliliters of HBSS in a 50 milliliter tube. Mix by gently pipetting the solution up and down approximately 10 times. Then, isolate mouse spleen cells as demonstrated in the video protocol for FACS isolation of splenic B-lymphocytes.

Label four 15-milliliter tubes one through four and add one times 10 to the seventh isolated spleen cells. Next, add three milliliters of HBSS 2% FCS to each tube. Then, pipette one microliter of five micromolar carboxyfluorescein succinimidyl ester, or CFSE, into each tube. Incubate the tubes at 37 degrees Celsius in a 5% carbon dioxide incubator for 10 minutes. The cells in tubes one and two will not be stimulated. They will be used to reveal the basal level of proliferation of splenic CD4 and CD8 T-cells.

Pipette 10 milliliters of HBSS 2% FCS into these tubes. Tubes three and four will be stimulated by anti-CD3 antibody in order to observe the effects on the cell cycle. Add 10 milliliters of HBSS 2% FCS and anti-CD3 antibody at a final concentration of 2.5 micrograms per milliliter to tubes three and four. Next, centrifuge all of the tubes at 370 x g for seven minutes at 10 degrees Celsius. Discard the supernatants. Resuspend the pellets in two milliliters of HBSS 2% FCS and pipette the resulting solutions into separate wells on a six-well plate. Carefully label the plate from one to four to keep track of sample identities. Incubate the cells at 37 degrees Celsius and 5% CO2 for three days.

On day three, add two milliliters of HBSS 2% FCS to wells one and three, which should contain the cells from tubes one and three. Pipette up and down vigorously and then transfer the samples into labeled five-milliliter FACS tubes. Place the six-well plate back into the incubator. These remaining cells from wells two and four will be analyzed on day five to investigate long-term effects of stimulation on the cell cycle. Centrifuge the tubes at 370 x g for seven minutes at 10 degrees Celsius and then discard the supernatants. Now, add 100 microliters of antibody mix to each tube. Incubate the tubes for 20 minutes on ice in the dark. Next, add one milliliter of HBSS 2% FCS to each tube and centrifuge the tubes at 370 x g for seven minutes at 10 degrees Celsius. Discard the supernatants. Re-suspend the pellets in 200 milliliters of HBSS 2% FCS and mix well. Transfer the resuspended pellets to new labeled FACS tubes.

Then, evaluate T-cell proliferation using flow cytometry as shown in the FACS protocol. Gate the cells to select lymphoid CD3-positive cells and to distinguish CD4-positive and CD8-positive cells, and record the data for tubes one and three. On day five, repeat the cell-staining process with the cells from the remaining two wells of the six-well plate.

We will analyze the effects of CD3 stimulation on the cell cycle of CD4 and CD8-positive cells at three days and five days post-stimulation. To begin, click on the FlowJo icon and drag your files into the All Sample window. Double-click on the file for the unstimulated cells collected on day three to display a dot plot with forward scatter on the y-axis and side scatter on the x-axis. Click on polygon to circle the lymphocyte populations based on their morphology. In the sub-population identification window, name the population lymphocytes and click OK. Next, double-click on the circled population and in the new window, select Thy1.2 on the y-axis and CD3 on the x-axis. Then, click on polygon to circle the CD3 and Thy1.2 double positive cells. In the new sub-population identification window, name the population T-Cells and click OK. Next, double-click on the circled population. In the new window, select CD4 on the y-axis and CD8 on the x-axis. Then, click on polygon to circle the CD4-positive population. In the new sub-population identification window, name the population CD4 T-Cells and click OK. Now, click on polygon to circle the CD8-positive population. In the new sub-population identification window, name the population CD8 T-Cells and click OK. Repeat these steps with the other files.

To determine the frequencies of dividing and non-dividing cells, first, visualize the cell populations by clicking on Layout Editor. Then, drag the CD4 T-cells and CD8 T-cells from each of the four tubes to the All Sample window. Graphs representing your populations will appear. For each tube, double-click on the dot plot for CD8 T-cells and select Histogram under Graph Definition to visualize the results. Select CFSE as the parameter to compare the stimulated versus unstimulated cell populations at each time point. Non-dividing cells maintain higher levels of CFSE whereas proliferating cells split the content of CFSE to dividing cells.

Now, while pressing the Shift key, double-click on the histogram. In the new window, click range and select the range of CFSE corresponding to the highest peak. In the sub-population identification window, name the population Non-Dividing CD8 T-Cells and label the population Dividing CD8 Cells. Now, repeat to select the dividing and non-dividing CD4 T-cells in each tube. To examine the frequency of dividing CD3-positive cells, click on Table Editor. Then, drag the populations of interest, Dividing CD8 T-Cells and Dividing CD4 T-Cells, into table. On the Statistic menu, select Frequency of T-cells. Then, click on Create Table to reveal the frequency in a new table.

Tags

Cite This
JoVE Science Education Database. JoVE Science Education. Cell Cycle Analysis: Assessing CD4 and CD8 T Cell Proliferation After Stimulation Using CFSE Staining and Flow Cytometry. JoVE, Cambridge, MA, (2023).