Here, we describe a protocol for visualizing stem-like proliferating cells in the jellyfish Cladonema. Whole-mount fluorescent in situ hybridization with a stem cell marker allows for the detection of stem-like cells, and 5-ethynyl-2'-deoxyuridine labeling enables the identification of proliferating cells. Together, actively proliferating stem-like cells can be detected.
Cnidarians, including sea anemones, corals, and jellyfish, exhibit diverse morphology and lifestyles that are manifested in sessile polyps and free-swimming medusae. As exemplified in established models such as Hydra and Nematostella, stem cells and/or proliferative cells contribute to the development and regeneration of cnidarian polyps. However, the underlying cellular mechanisms in most jellyfish, particularly at the medusa stage, are largely unclear, and, thus, developing a robust method for identifying specific cell types is critical. This paper describes a protocol for visualizing stem-like proliferating cells in the hydrozoan jellyfish Cladonema pacificum. Cladonema medusae possess branched tentacles that continuously grow and maintain regenerative capacity throughout their adult stage, providing a unique platform with which to study the cellular mechanisms orchestrated by proliferating and/or stem-like cells. Whole-mount fluorescent in situ hybridization (FISH) using a stem cell marker allows for the detection of stem-like cells, while pulse labeling with 5-ethynyl-2'-deoxyuridine (EdU), an S phase marker, enables the identification of proliferating cells. Combining both FISH and EdU labeling, we can detect actively proliferating stem-like cells on fixed animals, and this technique can be broadly applied to other animals, including non-model jellyfish species.
Cnidaria is considered a basally branching metazoan phylum containing animals with nerves and muscles, placing them in a unique position for understanding the evolution of animal development and physiology1,2. Cnidarians are categorized into two main groups: Anthozoa (e.g., sea anemones and corals) possess only planula larvae and sessile polyp stages, while Medusozoa (members of Hydrozoa, Staurozoa, Scyphozoa, and Cubozoa) typically take the form of free-swimming medusae, or jellyfish, as well as planula larvae and polyps. Cnidarians commonly exhibit high regenerative capacity, and their underlying cellular mechanisms, particularly their possession of adult stem cells and proliferative cells, have attracted much attention3,4. Initially identified in Hydra, hydrozoan stem cells are located in the interstitial spaces between ectodermal epithelial cells and are commonly referred to as interstitial cells or i-cells3.
Hydrozoan i-cells share common characteristics that include multipotency, the expression of widely conserved stem cell markers (e.g., Nanos, Piwi, Vasa), and migration potential3,5,6,7,8. As functional stem cells, i-cells are extensively involved in the development, physiology, and environmental responses of hydrozoan animals, which attests to their high regenerative capacity and plasticity3. While stem cells, similar to i-cells, have not been identified outside of hydrozoans, even in the established model species Nematostella, proliferative cells are still involved in the maintenance and regeneration of somatic tissue, as well as the germ line9. As studies in cnidarian development and regeneration have been predominantly conducted on polyp-type animals such as Hydra, Hydractinia, and Nematostella, the cellular dynamics and functions of stem cells in jellyfish species remain largely unaddressed.
The hydrozoan jellyfish Clytia hemisphaerica, a cosmopolitan jellyfish species with different habitats around the world, including the Mediterranean Sea and North America, has been utilized as an experimental model animal in several developmental and evolutionary studies10. With its small size, easy handling, and large eggs, Clytia is suitable for lab maintenance, as well as for the introduction of genetic tools such as the recently established transgenesis and knockout methods11, opening up the opportunity for detailed analysis of the cellular and molecular mechanisms underlying jellyfish biology. In the Clytia medusa tentacle, i-cells are localized in the proximal region, called the bulb, and progenitors such as nematoblasts migrate to the distal tip while differentiating into distinct cell types, including nematocytes12.
During regeneration of the Clytia manubrium, the oral organ of jellyfish, Nanos1+ i-cells that are present in the gonads migrate to the region where the manubrium is lost in response to damage and participate in the regeneration of the manubrium7. These findings support the idea that i-cells in Clytia also behave as functional stem cells that are involved in morphogenesis and regeneration. However, given that the properties of i-cells differ among representative polyp-type animals such as Hydra and Hydractinia3, it is possible that the characteristics and functions of stem cells are diversified among jellyfish species. Furthermore, with the exception of Clytia, experimental techniques have been limited for other jellyfish, and the detailed dynamics of proliferative cells and stem cells are unknown13.
The hydrozoan jellyfish Cladonema pacificum is an emerging model organism that can be kept in a laboratory environment without a water pump or filtration system. The Cladonema medusa has branched tentacles, a common characteristic in the Cladonematidae family, and a photoreceptor organ called the ocellus on the ectodermal layer near the bulb14. The tentacle branching process occurs at a new branching site that appears along the adaxial side of the tentacle. Over time, the tentacles continue to elongate and branch, with the older branches being pushed out toward the tip15. In addition, Cladonema tentacles can regenerate within a few days upon amputation. Recent studies have suggested the role of proliferating cells and stem-like cells in tentacle branching and regeneration in Cladonema16,17. However, while conventional in situ hybridization (ISH) has been utilized to visualize gene expression in Cladonema, due to its low resolution, it is currently difficult to observe stem cell dynamics at the cellular level in detail.
This paper describes a method for visualizing stem-like cells in Cladonema by FISH and co-staining with EdU, a marker of cell proliferation18. We visualize the expression pattern of Nanos1, a stem cell marker5,17, by FISH, which allows for the identification of stem-like cell distribution at the single-cell level. In addition, the co-staining of Nanos1 expression with EdU labeling makes it possible to distinguish actively proliferating stem-like cells. This method for monitoring both stem-like cells and proliferative cells can be applied to a wide range of investigative areas, including tentacle branching, tissue homeostasis, and organ regeneration in Cladonema, and a similar approach can be applied to other jellyfish species.
NOTE: See the Table of Materials for details related to all materials, reagents, and equipment used in this protocol.
1. Probe synthesis
2. EdU incorporation and fixation
3. Fluorescent in situ hybridization
Cladonema tentacles have been used as a model to study the cellular processes of morphogenesis and regeneration15,16,17. The tentacle structure is composed of an epithelial tube where stem-like cells, or i-cells, are located in the proximal region, called the tentacle bulb, and new branches are sequentially added to the rear of the distal region of the bulb along the adaxial side (Figure 3A)15. Previous reports have indicated that cell proliferation is active both in the tentacle bulb and at the new branching sites using either EdU or BrdU labeling16,17. However, due to the resolution of in situ hybridization, it is unclear whether stem-like cells are truly proliferative or not. To visualize both stem-like and proliferative cells simultaneously at the cellular level, we performed FISH for stem cell markers (Nanos1 or Piwi) and EdU labeling for S phase cells in the same samples.
At cellular resolution by FISH, the expression of Nanos1 was localized at the tentacle bulb and the new branching site (Figure 3B). Piwi was also expressed in the tentacle bulb and at the new branching site in a pattern similar to that of Nanos1 (Figure 3C). These results were consistent with the observations from whole-mount in situ hybridization in a previous report17, where the budding branch of a 7-day-old medusa was almost uniformly labeled by Nanos1 and Piwi. To visualize the beginning of the accumulation of stem-like cells, we monitored the new branching site of a 5-day-old medusa. The co-labeling of Nanos1 expression and EdU-positive cells revealed the spatial pattern of stem-like cells and proliferative cells in the tentacle (Figure 4A). Although the gross distributions of EdU+ and Nanos1+ cells were consistent with previous reports16,17, EdU+ cells were more widely distributed throughout the tentacle bulb, at least at the beginning of branching, while Nanos1+ cells accumulated more locally at the tentacle bulb and the new branching site (Figure 4A and Figure 4E). These observations suggest that distinct distributions of stem-like cells and proliferating cells are detected depending on the developmental timing and different stages.
A more detailed view of the bulb and the new branching site revealed that EdU signals merge with nuclear staining, whereas Nanos1 expression is constrained to the cytoplasm surrounding the nucleus, consistent with a previous report5 (Figure 4B,C). A fraction (19.79%) of the cells exhibited co-labeling of EdU and Nanos1 (EdU+ Nanos1+; Figure 4B,C, yellow arrowheads, and Figure 4D), suggesting that these cells are an actively-proliferating stem cell population. Intriguingly, 14.46% of the cells were found to be EdU+ Nanos1− in the middle of the bulb and at the new branching site, suggesting the presence of non-stem-like proliferative cells (Figure 4B,C, white arrows, and Figure 4D). In contrast, 26.32% of cells were observed to be EdU− Nanos1+ at the base of the bulb and at the new branching site, indicating the presence of a stem cell population that is either slow-cycling or quiescent, neither of which is detected by EdU pulse labeling (Figure 4B,C, yellow arrows, and Figure 4D).
Figure 1: Scheme of the probe synthesis for in situ hybridization. Extraction of total RNA from medusae and cDNA synthesis from total RNA. Nanos1-specific PCR products were synthesized from the cDNA. The PCR products were ligated into the vectors, and amplified vectors were collected through competent cell culture. The PCR products with RNA polymerase binding sites were synthesized using the plasmids as templates. DIG-labeled RNA probes were synthesized by in vitro transcription. Abbreviations: DIG = digoxigenin. Please click here to view a larger version of this figure.
Figure 2: Scheme of EdU and fluorescent in situ hybridization co-staining. Medusae were incubated with 150 µM EdU for 1 h. Subsequently, the medusae were anesthetized (to relax the tissue) with 7% MgCl2 in H2O and fixed with 4% PFA O.N. at 4 °C. After fixation, the samples were hybridized with HB Buffer with a probe for 20-24 h at 55 °C. After the hybridization reaction, the samples were washed and incubated with anti-DIG-POD solution O.N. at 4 °C. The medusae were stained with Cy5-tyramide solution for 10 min, followed by the detection of EdU for 30 min and staining with Hoechst 33342 for 30 min. After completing all the staining processes, the medusae were mounted on the glass slide, and images were obtained with a confocal microscope. Abbreviations: EdU = 5-ethynyl-2'-deoxyuridine; FISH = fluorescent in situ hybridization; PFA = paraformaldehyde; O.N. = overnight; HB = hybridization. Please click here to view a larger version of this figure.
Figure 3: Nanos1 and Piwi expression patterns on the proximal adaxial side of the Cladonema medusa tentacle. (A) Schematic of a Cladonema medusa and tentacle. The adaxial side of the tentacle: the tentacle bulb (the most proximal region) with new branches sequentially formed on the new branching site. The inset (dashed square) indicates the area captured by the confocal image. (B) FISH images of Nanos1 gene expression from the proximal, adaxial side of the tentacle of a 7-day-old Cladonema medusa. (C) FISH images of Piwi gene expression from the proximal, adaxial side of the tentacle of a 7-day-old Cladonema medusa. DNA: green, Nanos1: magenta. B'–C' for Nanos1 FISH only images. Scale bars = 100 µm (B,C). Abbreviation: FISH = fluorescent in situ hybridization. Please click here to view a larger version of this figure.
Figure 4: EdU and Nanos1 expression patterns on the proximal, adaxial side of Cladonema medusa tentacle. (A–C) Images of the proximal adaxial side of the Cladonema medusa tentacle co-labeled with Nanos1 expression and EdU; 5-day-old medusae were used. (A) An overview of the tentacle. Yellow dashed squares indicate the areas of B and C. (B) Magnification of the tentacle bulb. (C) Magnification of a new branching site. Yellow arrowheads indicate the cells that are positive for both EdU and Nanos1. Yellow arrows indicate the cells that are only positive for Nanos1. White arrows indicate cells only positive for EdU. A–C panels are merged images for DNA (blue), EdU (green), and Nanos1 (magenta). A'–C' are panels for EdU only images; A''–C'' are for Nanos1 FISH only images. Scale bars = 100 µm (A), 50 µm (B, C). (D) The quantification of EdU- and/or Nanos1-positive cells in the basal side of the tentacle (quantification area = 30.10 µm2 square, n = 6, a total of 249 cells). EdU+ Nanos1− cells, 14.46%; EdU+ Nanos1+ cells, 19.79%; EdU− Nanos1+ cells, 26.32%; EdU− Nanos1− cells, 39.44%. (E) Schematic of a Cladonema medusa tentacle from the adaxial side.The overall distribution of EdU+ cells and Nanos1+ cells are shown in E and E', respectively. Please click here to view a larger version of this figure.
Table 1: Composition of different PCR reactions and buffers in this protocol. To calculate the volume of the PCR product (X µL) in the ligation reaction, see the note after protocol step 1.4. Please click here to download this Table.
Proliferating cells and stem cells are important cellular sources in various processes such as morphogenesis, growth, and regeneration21,22. This paper describes a method for co-staining the stem cell marker Nanos1 by FISH and EdU labeling in Cladonema medusae. Previous work using EdU or BrdU labeling has suggested that proliferative cells localize to the tentacle bulbs16,17, but their molecular characteristics were unclear. The present study shows the simultaneous determination of the distribution of proliferative cells and the localization of Nanos1+ stem-like cells (Figure 4). The results showed that some proliferative cells expressed Nanos1, but other cells were marked only with EdU and did not express Nanos1, suggesting the existence of stem cell heterogeneity or, potentially, of other proliferative cells. It will be interesting to dissect the detailed stem cell distribution during different processes in Cladonema, including tentacle branching, tissue homeostasis, organ regeneration, and germ cell maintenance.
The major bottleneck for visualizing stem cells in animals is the initial identification of stem cell markers. In cnidarians, stem cell markers have not been identified in non-hydrozoans3, and thus, at this stage, the direct application of FISH for stem cell markers remains limited to hydrozoans. Nevertheless, FISH allows for the detection of specific gene expression at the cellular level, and thus, by changing probes, this method can be extended to observe the spatial expression patterns of any genes of interest in detail. For example, using markers of progenitor cells and differentiated cells, we can verify the distribution of specific cell types in the Cladonema tentacles. As a caveat, the present protocol may have to be modified depending on the genes of interest due to differences in expression levels and mRNA stability. In particular, non-specific signals and weak signals are common problems associated with FISH. Changing the hybridization time and temperature, using bleaching reagents (formamide or methanol), and adjusting other parameters (TSA reaction time, Proteinase K treatment, washing after hybridization) may yield clearer signals and fewer nonspecific signals23,24. It is also important to select a FISH protocol appropriate to the animal model being used, since one FISH protocol may not be applicable to other species, even within the same taxon7,25,26.
EdU labeling is generally used to detect proliferative cells but could be used for different experimental purposes by varying the concentration and incubation time27. To detect proliferating cells, it is critical to determine a successful duration and concentration for EdU incorporation. In the pulse labeling used in this work, only proliferative cells that passed through S phase for a short period of time were marked, and similar short incubation methods have been utilized for detecting proliferating cells in other cnidarians6,28,29. By contrast, the combination of prolonged EdU incorporation and Nanos1 FISH may reveal the presence of slow-cycling or quiescent stem cells27. It is also possible to mark not only proliferative cells but also endocycling cells that have undergone DNA synthesis without division. Furthermore, by tracking EdU-labeled cells for a longer duration, we can determine the cellular capacity for migration and differentiation associated with proliferative cells and their cell lineage6,30.
While the combination of FISH and EdU or BrdU staining has been used7,31, the method established here can easily be applied to other marine invertebrates and non-model animals, including different jellyfish species. EdU staining is simpler and more sensitive than BrdU staining18, and with its short time incubation, it enables the detection of proliferating cells, unlike the previous study that used EdU for long-term cell labeling7. In recent years, with the advancement of next-generation sequencing technologies, genome and gene expression information has become available for many species. Identifying stem cells and proliferative cells will continue to be an effective approach for understanding stem cell heterogeneity and diversity and providing insights into the cellular dynamics underlying different biological phenomena.
The authors have nothing to disclose.
This work was supported by AMED under Grant Number JP22gm6110025 (to Y.N.) and by the JSPS KAKENHI Grant Number 22H02762 (to Y.N.).
2-Mercaptoethanol | Wako | 137-06862 | |
3.1 mL transfer pipette | Thermo Scientific | 233-20S | |
5-Bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal) | Wako | 029-15043 | |
anti-DIG-POD | Roche | 11207733910 | |
Cladonema pacificum Nanos1 forward primer | 5’-AAGAGACACAGTCATTATCAAGC GA-3’ |
||
Cladonema pacificum Nanos1 reverse primer | 5’-CGACGTGTCCAATTTTACGTGCT -3’ | ||
Cladonema pacificum Piwi forward primer | 5’- AAAAGAGCAGCGGCCAGAAAGA AGGC -3’ |
||
Cladonema pacificum Piwi reverse primer | 5’- GCGGGTCGCATACTTGTTGGTA CTGGC -3’ |
||
Click-iT EdU Cell Proliferation Kit for Imaging, Alexa Fluor 488 dye | Invitrogen | C10337 | EdU kit |
Coroline off | GEX Co. ltd | N/A | chlorine neutralizer |
DIG Nucleic Acid Detection Kit Blocking Reagent | Roche | 11175041910 | blocking buffer |
DIG RNA labeling mix | Roche | 11277073910 | |
DTT | Promega | P117B | |
ECOS competent cell DH5α | NIPPON GENE | 316-06233 | competent cell |
Fast gene Gel/PCR Extraction kit | Fast gene | FG-91302 | gel extraction kit |
Fast gene plasmid mini kit | Fast gene | FG-90502 | plasmid miniprep |
Formamide | Wako | 068-00426 | |
Heparin sodium salt from porcine | SIGMA-ALDRICH | H3393-10KU | |
Isopropyl-β-D(-)-thiogalactopyranoside (IPTG) | Wako | 096-05143 | |
LB Agar | Invitrogen | 22700-025 | agar plate |
LB Broth Base | Invitrogen | 12780-052 | LB medium |
Maleic acid | Wako | 134-00495 | |
mini Quick spin RNA columns | Roche | 11814427001 | clean-up column |
NaCl | Wako | 191-01665 | |
NanoDrop OneC Microvolume UV-Vis Spectrophotometer with Wi-Fi | Thermo Scientific | ND-ONEC-W | spectrophotometer |
Polyoxyethlene (20) Sorbitan Monolaurate (Tween-20) | Wako | 166-21115 | |
PowerMasher 2 | nippi | 891300 | homogenizer |
Proteinase K | Nacarai Tesque | 29442-14 | |
RNase Inhibitor | TaKaRa | 2313A | |
RNeasy Mini kit | Qiagen | 74004 | total RNA isolation kit |
RQ1 RNase-Free Dnase | Promega | M6101 | |
Saline Sodium Citrate Buffer 20x powder (20x SSC) | TaKaRa | T9172 | |
SEA LIFE | Marin Tech | N/A | mixture of mineral salts |
T3 RNA polymerase | Roche | 11031163001 | |
T7 RNA polymerase | Roche | 10881767001 | |
TAITEC HB-100 | TAITEC | 0040534-000 | Hybridization incuvator |
TaKaRa Ex Taq | TaKaRa | RR001A | Taq DNA polymerase |
TaKaRa PrimeScript 2 1st strand cDNA Synthesis Kit | TaKaRa | 6210A | cDNA synthesis kit |
Target Clone | TOYOBO | TAK101 | pTA2 Vector |
tRNA | Roche | 10109541001 | |
TSA Plus Cyanine 5 | AKOYA Biosciences | NEL745001KT | tyramide signal amplification (TSA) technique |
Zeiss LSM 880 | ZEISS | N/A | laser scanning confocal microscope |