Özet

离体 从内侧前额叶皮层到外嗅皮层的远距离突触传递和可塑性的光遗传学询问

Published: February 25, 2022
doi:

Özet

在这里,我们提出了一种协议,描述了具有光遗传学构建体的离散大脑区域的病毒转导,以允许在急性啮齿动物脑切片中进行突触特异性电生理表征。

Abstract

研究大脑中特定突触的生理特性,以及它们如何经历可塑性变化,是现代神经科学的一个关键挑战。传统的 体外 电生理技术使用电刺激来唤起突触传递。这种方法的一个主要缺点是其非特异性;刺激电极区域的所有轴突都将被激活,因此很难将效应归因于特定的传入连接。这个问题可以通过用基于光遗传学的刺激代替电刺激来克服。我们描述了一种将光遗传学与 体外 膜片钳记录相结合的方法。这是研究精确解剖学定义的突触连接的基底突触传递和突触可塑性的有力工具,几乎适用于大脑中的任何通路。在这里,我们描述了编码通道视紫红质蛋白的病毒载体的制备和处理,用于手术注射到啮齿动物大脑中感兴趣的突触前区域(内侧前额叶皮层),并制作下游靶区域的急性切片(外嗅皮层)。还介绍了将膜片钳记录与光刺激突触激活相结合以研究短期和长期突触可塑性的详细程序。我们讨论了通过结合光遗传学和Cre依赖性细胞标记来实现途径和细胞特异性的实验示例。最后,描述感兴趣的突触前区域的组织学确认以及突触后细胞的生物细胞素标记,以允许进一步识别精确位置和细胞类型。

Introduction

了解突触的生理学以及它们如何经历可塑性变化是了解大脑网络如何在健康大脑中发挥作用的基础1,以及它们如何在脑部疾病中出现故障。使用急性 离体 脑切片允许使用全细胞膜片钳记录以高信噪比记录来自单个神经元的突触的电活动。膜电位控制和直接的药理操作允许分离受体亚型。这些记录可以具有精确的特异性来识别突触后神经元,包括层状和亚区域位置2,细胞形态3分子标记的存在4,其传入投影5,甚至最近是否活跃6。

然而,实现突触前输入的特异性更具挑战性。传统方法使用刺激电极来激发在特定薄片中运行的轴突。这方面的一个例子是在海马体中,辐射层中的局部刺激激活从CA3投射到CA1子场7的突触。在这种情况下,由于CA3输入代表位于投射到CA1锥体细胞8的辐射层内的唯一兴奋性输入,因此实现了突触前特异性。然而,CA3-CA1轴突的常规电突触前激活可实现的这种高度的输入特异性是一个例外,反映在该突触所受到的深入研究中。在其他大脑区域中,来自多个传入通路的轴突共存于同一层中,例如,在新皮层9的第1层中,因此使用传统的刺激电极无法进行特定于输入的突触前刺激。这是有问题的,因为不同的突触输入可能具有不同的生理特性;因此,它们的共刺激可能导致突触生理学的错误表征。

光遗传学的出现,即通道视紫红质-2(ChR2)等光敏膜蛋白(视蛋白)的遗传编码,为研究大脑区域之间的孤立突触投影提供了巨大的可能性1011。在这里,我们描述了一种可推广且低成本的解决方案,用于研究长距离突触生理学和可塑性。光遗传学构建体使用病毒载体以高度特异性的方式传递,允许对感兴趣的突触前区域进行极其精确的控制。传出投影将表达光激活通道,允许在目标区域中激活这些纤维。因此,可以研究不能通过传统的非特异性电刺激独立激活的长距离解剖弥漫通路。

我们描述了作为示例途径,内侧前额叶皮层(mPFC)与编码兴奋性阳离子通道视蛋白的腺相关病毒(AAV)的转导。然后,我们描述了从外嗅皮层(LEC)制备急性切片,从第5层LEC锥体神经元的膜片钳记录以及谷氨酸能mPFC-LEC投影的光诱发激活(图1)。我们还描述了注射部位的组织学评估,以确认感兴趣的突触前区域的位置并识别突触后细胞形态。

Protocol

所有动物程序均按照《英国动物科学程序法》(1986年)和相关指南以及当地机构指南进行。 1.立体定位病毒注射 注意:当前协议需要解剖学特异性,但不是突触后细胞类型。 选择合适的动物。在该协议中使用雄性野生型李斯特连帽大鼠(300-350g,约3个月大)。 选择合适的病毒构建体。有几个因素需要考虑(见讨论</stron…

Representative Results

在该协议中,我们描述了如何使用光遗传学构建体的病毒递送来研究长距离突触生理学和可塑性。该协议可以很容易地适应研究大脑中几乎所有的远程连接。例如,我们描述了将编码视蛋白的AAV注射到大鼠mPFC中,从LEC制备急性切片,从第5层LEC锥体神经元中膜片钳记录,以及LEC中mPFC末端的光诱发激活(图1)。 找到并修补健康的锥体细胞(例如, <strong c…

Discussion

这里介绍的方案描述了一种探索高度特异性的远程突触投影的方法,该方法结合了立体定位手术来提供编码光遗传学构建体的AAV,以及急性脑切片中的电生理学(图1)。这些技术共同提供了工具,可以在以前使用传统的非特异性电刺激无法获得的远程和解剖弥漫通路中高精度地表征脑回路的生理学和可塑性。与细胞特异性分子标记相结合,可以表征从一个大脑区域到另一个…

Açıklamalar

The authors have nothing to disclose.

Acknowledgements

这项工作得到了惠康赠款206401/Z/17/Z的支持。我们要感谢扎法尔·巴希尔的专家指导和克莱尔·布斯博士的技术援助和对手稿的评论。

Materials

0.2 mL tube Fisher Scientific Ltd 12134102
10 µL pipette Gilson FD10001
24 well plate SARSTEDT 83.3922
3 way luer valve Cole-Parmer WZ-30600-02
3,3′-Diaminobenzidine (DAB) substrate Vector Laboratories SK-4105
40x objective Olympus LUMPLFLN40XW
4-aminopyridine Hello Bio HB1073
4x objective Olympus PLN4X/0.1
AAV9-CaMKiia-hChR2(E123T/T159C)-mCherry Addgene 35512 Viral titre: 3.3×1013 GC/ml
Achromatic lens Edmund Optics 49363 Focusses visual spectrum and near-IR
Benchtop microcentrifuge Benchmark Scientific C1005*
Biocytin Sigma-Aldrich B4261
Borosillicate glass capillary Warner Instruments G150F-6
Burr Fine science tools 19008-07
CaCl2 Sigma-Aldrich C5670
Camera – Qimaging Retiga Electro Photometrics 01-ELECTRO-M-14-C
Carbachol Tocris 2810
Chlorhexidine surgical scrub Vetasept XHG008
Clippers Andis 22445 AGC Super 2-Speed Detachable Blade Clipper
Collimation condenser lens ThorLabs ACL2520-A
Coverslips Fisher Scientific Ltd 10011913
Cryostat Leica CM3050 S
CsMeSO4 Sigma-Aldrich C1426
Cyanoacrylate glue Rapid Electronics Ltd 84-4557
Data acquisition device National Instruments USB-6341 BNC
D-glucose Sigma-Aldrich G8270
Dichroic mirror 500 nm long-pass Edmund Optics 69899
Dichroic mirror 600 nm long-pass Edmund Optics 69901
Dichroic mirror cube ThorLabs CM1-DCH/M
EGTA Millpore 324626
Electrode holder with side port HEKA 895150
Emission filter Chroma 59022m
Excitation filter Chroma ET570/20x
Eye gel Dechra Lubrithal
Fine paint brush Scientific Laboratory Supplies BRU2052
Guillotine World Precision Instruments DCAP
HEPES Sigma-Aldrich H3375
Hydrogen peroxide solution Sigma-Aldrich H1009 30% (w/w)
Isoflurane Henry Schein 988-3245
Isopentane Sigma-Aldrich M32631
KCl Sigma-Aldrich P3911
k-gluconate Sigma-Aldrich G4500
Kinematic fluorescence filter cube ThorLabs DFM1T1
LED driver ThorLabs LEDD1B
Lidocaine ointment Teva 80007150
MgATP Sigma-Aldrich A9187
MgCl Sigma-Aldrich M2670
MgSO4 Sigma-Aldrich M7506
Micro drill Harvard Apparatus 75-1887
Microelectrode puller Sutter instruments P-87
Microinjection syringe Hamilton 7634-01/00
Microinjection syringe needle Hamilton 7803-05 Custom specification: gauge 33, length 15mm, point style 4 – 12°
Microinjection syringe pump World Precision Instruments UMP3T-1
Mounted blue LED ThorLabs M470L5
Mounted green LED ThorLabs M565L3
Na2HPO4.7H2O Sigma-Aldrich S9390
NaCl Sigma-Aldrich S9888
NaGTP Sigma-Aldrich G8877
NaH2PO4 Sigma-Aldrich S0751
NaH2PO4.H2O Sigma-Aldrich S9638
NaHCO3 Sigma-Aldrich S5761
NIR LED OSRAM SFH4550 Used for refracted IR imaging of slice, differential interference contrast (DIC) optics is another commonly used method
OCT medium VWR International RAYLLAMB/OCT Optimal cutting temperature medium
Paraformaldehyde Sigma-Aldrich 158127
Paraformaldehyde Sigma-Aldrich P6148
Patch clamp amplifier Molecular Devices 700A
Peristaltic pump World Precision Instruments Ministar
Poly-L-lysine coated microscope slides Fisher Scientific Ltd 23-769-310
Recording chamber Warner Instruments RC-26G
Scalpel blade Swann Morton #24
Slice anchor Warner Instruments SHD-26-GH/15
Stereotaxic frame Kopf Model 902
Stereotaxic holder for micro drill Harvard Apparatus 75-1874
Sucrose Sigma-Aldrich S0389
Surgical Microscope Carl Zeiss OPMI 1 FR pro
Suture Ethicon W577H
Syringe filter for intracellular recording solution Thermo Scientific Nalgene 171-0020
Tetrodotoxin citrate Hello Bio HB1035
Transfer pipettes Fisher Scientific Ltd 10458842
Triton X-100 Sigma-Aldrich X100
Upright fluorescence microscope Leica DM6 B
VECTASHIELD Antifade Mounting Medium with DAPI Vector Laboratories H-1200-10
VECTASTAIN ABC-HRP kit Vector Laboratories PK-4000
Vibratome Campden Instruments 7000smz-2
WinLTP https://www.winltp.com/ Version 2.32 Data acquisition software
Solution
aCSF
sucrose cutting solution
PFA
Intracellular?

Referanslar

  1. Martin, S., Grimwood, P., Morris, R. Synaptic plasticity and memory: an evaluation of the hypothesis. Annual Review of Neuroscience. 23, 649-711 (2000).
  2. Poorthuis, R. B., et al. Layer-specific modulation of the prefrontal cortex by nicotinic acetylcholine receptors. Cerebral Cortex. 23 (1), 148-161 (2013).
  3. Scala, F., et al. Layer 4 of mouse neocortex differs in cell types and circuit organization between sensory areas. Nature Communications. 10 (1), 4174 (2019).
  4. Nassar, M., et al. Diversity and overlap of parvalbumin and somatostatin expressing interneurons in mouse presubiculum. Frontiers in Neural Circuits. 9, 20 (2015).
  5. Dembrow, N. C., Chitwood, R. A., Johnston, D. Projection-specific neuromodulation of medial prefrontal cortex neurons. Journal of Neuroscience. 30 (50), 16922-16937 (2010).
  6. Whitaker, L. R., et al. Bidirectional modulation of intrinsic excitability in rat prelimbic cortex neuronal ensembles and non-ensembles after operant learning. Journal of Neuroscience. 37 (36), 8845-8856 (2017).
  7. Skrede, K. K., Westgaard, R. H. The transverse hippocampal slice: a well-defined cortical structure maintained in vitro. Brain Research. 35 (2), 589-593 (1971).
  8. van Strien, N. M., Cappaert, N. L., Witter, M. P. The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. Nature Reviews Neuroscience. 10 (4), 272-282 (2009).
  9. Cruikshank, S. J., et al. Thalamic control of layer 1 circuits in prefrontal cortex. Journal of Neuroscience. 32 (49), 17813-17823 (2012).
  10. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience. 8 (9), 1263-1268 (2005).
  11. Nagel, G., et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences of the United States of America. 100 (24), 13940-13945 (2003).
  12. Berndt, A., et al. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proceedings of the National Academy of Sciences of the United States of America. 108 (18), 7595-7600 (2011).
  13. Cetin, A., Komai, S., Eliava, M., Seeburg, P. H., Osten, P. Stereotaxic gene delivery in the rodent brain. Nature Protocols. 1 (6), 3166-3173 (2006).
  14. Segev, A., Garcia-Oscos, F., Kourrich, S. Whole-cell patch-clamp recordings in brain slices. Journal of Visualized Experiments: JoVE. (112), (2016).
  15. Booker, S. A. Preparing acute brain slices from the dorsal pole of the hippocampus from adult rodents. Journal of Visualized Experiments: JoVE. (163), (2020).
  16. Anderson, W. W., Collingridge, G. L. Capabilities of the WinLTP data acquisition program extending beyond basic LTP experimental functions. Journal of Neuroscience Methods. 162 (1-2), 346-356 (2007).
  17. Basu, J., et al. Gating of hippocampal activity, plasticity, and memory by entorhinal cortex long-range inhibition. Science. 351 (6269), (2016).
  18. Zhang, Y. P., Oertner, T. G. Optical induction of synaptic plasticity using a light-sensitive channel. Nature Methods. 4 (2), 139-141 (2007).
  19. Banks, P. J., Warburton, E. C., Bashir, Z. I. Plasticity in prefrontal cortex induced by coordinated synaptic transmission arising from reuniens/rhomboid nuclei and hippocampus. Cerebral Cortex Communications. 2 (2), (2021).
  20. Petreanu, L., Mao, T., Sternson, S. M., Svoboda, K. The subcellular organization of neocortical excitatory connections. Nature. 457 (7233), 1142-1145 (2009).
  21. Swietek, B., Gupta, A., Proddutur, A., Santhakumar, V. Immunostaining of biocytin-filled and processed sections for neurochemical markers. Journal of Visualized Experiments: JoVE. (118), (2016).
  22. Jones, B. F., Witter, M. P. Cingulate cortex projections to the parahippocampal region and hippocampal formation in the rat. Hippocampus. 17 (10), 957-976 (2007).
  23. Anastasiades, P. G., Collins, D. P., Carter, A. G. Mediodorsal and ventromedial thalamus engage distinct L1 circuits in the prefrontal cortex. Neuron. 109 (2), 314-330 (2021).
  24. Prakash, R., et al. Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation. Nature Methods. 9 (12), 1171-1179 (2012).
  25. Mattis, J., et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nature Methods. 9 (2), 159-172 (2011).
  26. Klapoetke, N. C., et al. Independent optical excitation of distinct neural populations. Nature Methods. 11 (3), 338-346 (2014).
  27. Hochbaum, D. R., et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nature Methods. 11 (8), 825-833 (2014).
  28. Ting, J. T., Daigle, T. L., Chen, Q., Feng, G. Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. Methods in Molecular Biology. 1183, 221-242 (2014).
  29. Marshel, J. H., et al. Cortical layer-specific critical dynamics triggering perception. Science. 365 (6453), (2019).
  30. Castle, M. J., Gershenson, Z. T., Giles, A. R., Holzbaur, E. L., Wolfe, J. H. Adeno-associated virus serotypes 1, 8, and 9 share conserved mechanisms for anterograde and retrograde axonal transport. Human Gene Therapy. 25 (8), 705-720 (2014).
  31. Aschauer, D. F., Kreuz, S., Rumpel, S. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One. 8 (9), 76310 (2013).
  32. Nathanson, J. L., Yanagawa, Y., Obata, K., Callaway, E. M. Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors. Nörobilim. 161 (2), 441-450 (2009).
  33. Dimidschstein, J., et al. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nature Neuroscience. 19 (12), 1743-1749 (2016).
  34. Lavin, T. K., Jin, L., Lea, N. E., Wickersham, I. R. Monosynaptic tracing success depends critically on helper virus concentrations. Frontiers in Synaptic Neuroscience. 12, 6 (2020).
  35. Paxinos, G., Watson, C. . The Rat Brain in Stereotaxic Coordinates. 7th edn. , (2013).
  36. Paxinos, G., Franklin, K. B. J. . Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates, Compact. 5th edn. , (2019).
  37. Nabavi, S., et al. Engineering a memory with LTD and LTP. Nature. 511 (7509), 348-352 (2014).
  38. Jackman, S. L., Beneduce, B. M., Drew, I. R., Regehr, W. G. Achieving high-frequency optical control of synaptic transmission. Journal of Neuroscience. 34 (22), 7704-7714 (2014).
  39. Xia, S. H., et al. Cortical and Thalamic Interaction with Amygdala-to-Accumbens Synapses. Journal of Neuroscience. 40 (37), 7119-7132 (2020).
  40. Anisimova, M., et al. Spike-timing-dependent plasticity rewards synchrony rather than causality. BioRxiv. , (2021).
  41. Takeuchi, T., et al. Locus coeruleus and dopaminergic consolidation of everyday memory. Nature. 537 (7620), 357-362 (2016).

Play Video

Bu Makaleden Alıntı Yapın
Kinnavane, L., Banks, P. J. Ex Vivo Optogenetic Interrogation of Long-Range Synaptic Transmission and Plasticity from Medial Prefrontal Cortex to Lateral Entorhinal Cortex. J. Vis. Exp. (180), e63077, doi:10.3791/63077 (2022).

View Video