Presented here is a protocol introducing a set of child-friendly statistical learning tasks geared towards examining children’s learning of temporal statistical patterns across domains and sensory modalities. The developed tasks collect behavioral data using the web-based platform and task-based functional magnetic resonance imaging (fMRI) data for examining neural engagement during statistical learning.
Statistical learning, a fundamental skill to extract regularities in the environment, is often considered a core supporting mechanism of the first language development. While many studies of statistical learning are conducted within a single domain or modality, recent evidence suggests that this skill may differ based on the context in which the stimuli are presented. In addition, few studies investigate learning as it unfolds in real-time, rather focusing on the outcome of learning. In this protocol, we describe an approach for identifying the cognitive and neural basis of statistical learning, within an individual, across domains (linguistic vs. non-linguistic) and sensory modalities (visual and auditory). The tasks are designed to cast as little cognitive demand as possible on participants, making it ideal for young school-aged children and special populations. The web-based nature of the behavioral tasks offers a unique opportunity for us to reach more representative populations nationwide, to estimate effect sizes with greater precision, and to contribute to open and reproducible research. The neural measures provided by the functional magnetic resonance imaging (fMRI) task can inform researchers about the neural mechanisms engaged during statistical learning, and how these may differ across individuals on the basis of domain or modality. Finally, both tasks allow for the measurement of real-time learning, as changes in reaction time to a target stimulus is tracked across the exposure period. The main limitation of using this protocol relates to the hour-long duration of the experiment. Children might need to complete all four statistical learning tasks in multiple sittings. Therefore, the web-based platform is designed with this limitation in mind so that tasks may be disseminated individually. This methodology will allow users to investigate how the process of statistical learning unfolds across and within domains and modalities in children from different developmental backgrounds.
Statistical learning is an elementary skill supporting the acquisition of rule-governed combinations in language inputs1. Successful statistical learning ability in infants predicts later language learning success2,3. Variability in statistical learning skills in school-aged children has also been associated with vocabulary4 and reading5,6. Difficulty in statistical learning has been proposed as one etiological mechanism underlying language impairment7. Despite the association between statistical learning and language outcomes in both neurotypical and atypical populations, the cognitive and the neural mechanisms underlying statistical learning remain poorly understood. In addition, previous literature has revealed that, within an individual, statistical learning ability is not uniform but independent across domains and modalities6,8,9. The developmental trajectory of statistical learning abilities may further vary across domains and modalities10. These findings emphasize the importance of assessing individual differences in statistical learning across multiple tasks throughout the course of development. However, the field first requires a more systematic investigation of the relationship between statistical learning and first language development. To address these questions, we apply innovative methods including a web-based testing platform11 that reaches a large number of children, and laboratory-based neuroimaging techniques (functional magnetic resonance imaging, or fMRI) that examine the real-time encoding of statistical information.
Standard measures of statistical learning begin with a familiarization phase and are followed by a two-alternative forced choice (2-AFC) task12,13. The familiarization phase introduces a continuous stream of stimuli embedded with statistical regularities, where some stimuli are more likely to co-occur than others. The presentation of these co-occurring stimuli follows a fixed temporal order. Participants are passively exposed to the stream during the familiarization phase, followed by a 2-AFC task that tests whether the participant successfully extracted the patterns. The 2-AFC accuracy task presents two consecutive sequences: one sequence has been presented to the participant during the familiarization phase, while the other is a novel sequence, or contains part of the sequence. Above-chance accuracy on the 2-AFC would indicate successful learning at the group level. Traditional behavioral tasks assessing statistical learning generally rely upon accuracy as the outcome measure of learning. However, accuracy fails to account for the natural learning of information as it unfolds in time. A measure of real-time learning is necessary to tap into the implicit learning process of statistical learning during which children are still encoding the regularities from the inputs14,15,16. Various adaptations across paradigms have been developed in an effort to move away from the 2-AFC measure, towards measures of on-line learning through behavioral responses during the exposure16. Studies utilizing these adaptations which measure reaction time during the exposure phase found they were related to post-learning accuracy17 with better test-retest reliability compared to that of the accuracy in adult learners18.
Neural measures are also foundational to our understanding of how learning unfolds over time, as the implicit process by which language learning occurs likely recruits different neural resources from those used once language is learned19. Neural measures also provide insights into differences in cognitive specializations underlying language ability across special populations20. How the condition contrast is designed in an fMRI study is crucial for how we interpret patterns of neural activation during learning. One common practice is to compare brain responses during the familiarization phase between sequences containing regular patterns versus those containing the same stimuli which are ordered randomly. However, previous research implementing such a random control condition found no evidence for learning in behavior, despite neural differences between structured and random sequences. This might be due to the interference of random sequences on learning of structured sequences, as both were constructed from the same stimuli21,22. Other fMRI studies which utilized backward speech or earlier learning blocks as the control condition confirmed learning took place behaviorally19,23. However, each of these paradigms introduced its own confounding factor, such as the effect of language processing for the former case and the effect of the experimental order for the latter case. Our paradigm uses the random sequence as the control condition but mitigates their interference on participants’ learning of the structured sequences. Our fMRI paradigm also implements a mixed block/event-related design, which allows for the simultaneous modeling of transient trial-related and sustained task-related BOLD signals24. Lastly, and more broadly, neural measures allow for the measurement of learning in populations where eliciting an explicit behavioral response may be difficult (e.g., developmental and special populations)25.
The current protocol adopts a response time measure, in addition to traditional accuracy measures, and examines brain activation during the familiarization phase. The combination of these methods aims to provide a rich dataset for the investigation of real-time learning processes. The web-based platform offers a set of learning measures by including both response time during the exposure phase and accuracy of the 2-AFC task during the test phase. The neuroimaging protocol allows for the investigation of the underlying neural mechanisms supporting statistical learning across domains and modalities. While it is optimal to measure statistical learning within an individual using both the web-based and fMRI protocols, the tasks are designed so that they may be disseminated independently, and therefore, as two independent measures of statistical learning. The fMRI experiments included in the current protocol can help clarify how stimulus encoding, pattern extraction, and other constituent components of statistical learning are represented by particular brain regions and networks.
All participants gave written consent to participate and study was conducted in accordance with the Institutional Review Board.
1. Overview of the statistical learning paradigm utilized in the web-based protocol
2. Participant recruitment
NOTE: While the web-based protocol and the fMRI protocol are best implemented together within a single participant, here we outline the best practices for participant recruitment for each task independently.
3. Web based protocol
NOTE: The web-based statistical learning paradigm is hosted on a secure website (https://www.cogscigame.co11) and developed using jsPsych, a JavaScript library for creating behavioral experiments online30.
4. Task based fMRI protocol
Web-based Behavioral Results
Given the current protocol is designed for easy dissemination with developmental populations, we have included preliminary web-based results based on data from 22 developing school-aged children (Mean (M) age = 9.3 years, Standard Deviation (SD) age = 2.04 years, range = 6.2-12.6 years, 13 girls). In the web-based statistical learning task, children performed significantly better than 0.5 chance-level on all conditions, indicating successful statistical learning at the group level (see Table 1 for statistics; Figure 3). Mean reaction time slope was negative and significantly below 0 in the syllable condition (M = -0.01, SD = 0.02, t(14) = -2.36, one-tailed p = .02) and marginally significant in the letter condition (M = -0.02, SD = 0.06, t(15) = -1.52, one-tailed p = .07, Figure 4), suggesting a faster acceleration of target detection during the familiarization phase in the linguistic tasks. Mean reaction time slope was not significantly different from zero in the image condition (M = 0.02, SD = 0.04, t(17) = 1.54, one-tailed p > .1) or the tone condition (M = 0.005, SD = 0.02, t(15) = -5.7 x 10-17, one-tailed p > .1), despite evidence of learning in the offline measures of accuracy. Cronbach’s alpha was 0.75 for the Letter task, 0.09 for the Syllable task, 0.67 for the Tone task, and 0.86 for the Image task. Correlations between implicit measures (RT slope) and explicit measures (accuracy) of statistical learning identify a significant relationship for the Image task (R = -.48, p = 0.04) and Letter task (R = -.54, p = 0.03). Inter-task correlations further suggest that the four tasks may have a modest degree of overlapping learning mechanism (Figure 5). While accuracy on both visual tasks was highly correlated (R = .60, p = 0.02), they were also positively associated with accuracy on the Syllable task (Image R = .66, p = 0.01; Letter R = .85, p < 0.001).
fMRI Results
Preliminary fMRI results were based on data from nine developing school-aged children. These nine children were a subset of the 22 children included in the web-based behavioral results, as not all children came to the lab to complete the fMRI portion of the study. All nine completed the auditory statistical learning tasks (M age = 10.77 years, SD = 1.96 years, range = 7.7-13.8 years, 4 girls) and seven completed the visual statistical learning tasks (M age = 11.41 years, SD = 2.37 years, range = 7.7-13.8 years, 4 girls). When comparing structured blocks to random blocks, significant clusters were observed in all four conditions (Figure 6). In the syllable condition, greater activation was found at the left superior temporal gyrus, right insula/frontal operculum, and anterior cingulate gyrus. In the tone condition, greater activation was found at left middle temporal gyri, bilateral angular gyri, left frontal pole, right lateral occipital cortex, right insula, and right frontal operculum. In the letter condition, greater activation was found at the left planum temporal. In the image condition, greater activation was found at the right lateral occipital cortex. These preliminary findings suggest that children’s neural activation patterns differ across learning of statistical regularities depending on the modality and domain of the presented stimuli. The current task design is sensitive to these differences and can identify task-specific regions of activation similar to past studies20,25.
fMRI Behavioral Results
To demonstrate learning in the fMRI portion of this study, we have included in-scanner behavioral results from 28 adults (M age = 20.8, SD = 3.53, 20 females), as the data from 9 children was not enough to compute reliable statistics. Our findings in adults indicate that learning successfully occurred in all tasks for the structured sequence, supported by significantly quicker response time in the structured as compared to the random condition, except in the case of the tone task (see Table 2 for statistics).
Taken together, our web-based measures of accuracy, and increased activation for structured versus random sequences in the scanner, indicate this protocol may be implemented with developmental populations to gauge statistical learning across domains and modalities within an individual. Our behavioral MRI results in an adult population further emphasis the utility of this protocol in measuring learning of structured sequences as it unfolds in real-time, as well as the ability to implement the web-based and fMRI protocols independently.
Figure 1: Familiarization phase of all four statistical learning tasks. Example triplets across each task are depicted in this figure. Each visual stimulus appeared for 800 ms with a 200 ms ISI, and each auditory stimulus was heard for 460 ms with a 20 ms ISI. Please click here to view a larger version of this figure.
Figure 2: Familiarization modification for fMRI statistical learning tasks. The fMRI task was similar to the web-based familiarization phase but introduced a random sequence that was counterbalanced across domains. Please click here to view a larger version of this figure.
Figure 3: Average statistical learning (SL) accuracy in the web-based task compared against chance-level. Results indicate individuals performed significantly above chance on all four tasks, ***one-tailed p < .001, ** < 0.01, * < 0.05. Please click here to view a larger version of this figure.
Figure 4: Mean reaction time slope in the web-based task against zero. A more negative slope indicates faster acceleration in the target detection during familiarization. Target detection significantly improved over the course of exposure during the syllable task. †one-tailed p = .07, * < .05. Please click here to view a larger version of this figure.
Figure 5: Web-based between-task correlations across all four statistical learning tasks. (a) Non-significant values at an alpha of .05 are shown with a white background. All comparisons with a colored background denote significant effects. (b) Sample size for each pairwise comparison. Please click here to view a larger version of this figure.
Figure 6: Neural activation at the group-level for structured blocks compared to random blocks within each modality and domain. Significant clusters were thresholded at voxel-level p < 0.001 and cluster-level p < 0.05 for each task. Horizontal slices were selected to depict the cluster with the maximum z-value. The color bar in the bottom, right corner reflects the same scale for all plots. Please click here to view a larger version of this figure.
Condition | Mean | Standard Deviation | One-tailed T-test |
Image | 0.63 | 0.21 | t(17) = 2.64, p = .009 |
Letter | 0.66 | 0.16 | t(15) = 3.98, p < .001 |
Tone | 0.60 | 0.15 | t(16) = 2.83, p = .006 |
Syllable | 0.55 | 0.1 | t(14) = 2.06, p = .03 |
Table 1: Web-based accuracy by condition. One-sample t-tests represent group differences compared to 0.5 chance-level.
Structured | Random | ||||
Condition | Mean | Standard Deviation | Mean | Standard Deviation | Paired Samples T-test |
Image | 468.1 | 76.04 | 493.4 | 60.33 | t(27) = -2.01, p = .05 |
Letter | 374.72 | 143.59 | 502.1 | 68.75 | t(27) = -4.97, p <.001 |
Tone | 426.37 | 169.10 | 407.68 | 162.63 | t(26) = 0.67, p = .51* |
Syllable | 589.3 | 180.95 | 679.9 | 55.99 | t(26) = -2.51, p = .02* |
*One subject had too few button presses to compute a value for the tone or syllable task. |
Table 2: MRI behavioral performance differences on random versus structured sequences across all four tasks in adults. Paired-samples t-tests represent group differences in learning of structured versus random sequences.
The methods presented in the current protocol provide a multimodal paradigm for understanding the behavioral and neural indices of statistical learning across the course of development. The current design allows for the identification of individual differences in statistical learning ability across modalities and domains, which can be used for future investigation of the relationship between statistical learning and language development. Since an individuals’ statistical learning ability is found to vary across domains and modalities6,8,9, it is optimal if participants complete all four tasks. Findings from typically developing children and adults indicate that an individuals’ performance across statistical learning domains/modalities can differentially relate to vocabulary4 and reading5,6 outcomes. Therefore, we recommend additional measures of cognitive and language abilities be taken to relate to the measures of statistical learning taken in the current protocol.
Research has reported reasonable internal consistency and test-retest reliability of these statistical learning tasks for adults8,42. However, concerns about task reliability for children42 and a recent discussion on general measurement issues9 indicates an urgent need to develop measures of statistical learning, that take into account children’s developmental characteristics. While our previous research, as well as the preliminary data from the current protocol, indicates high internal consistency for the non-linguistic statistical learning tasks in school-aged children between 8 and 16 years old6, our research also confirmed a less satisfying task reliability, particularly in auditory linguistic statistical learning which has been reported before42. The differences in internal consistency between tasks are particularly intriguing in light of recent findings on the impact of a learner’s prior linguistic experiences on statistical learning outcomes18,43,44. Language and reading development change rapidly during the school years. The learnability of each auditory linguistic triplet might differ substantially within each child, depending on their developmental stage and current language abilities. Combining our protocol with other individual difference measures will offer an exciting opportunity to study the cascading effect between existing skills and subsequent learning underlying the heterogeneity of statistical learning performance across the course of development.
An important benefit of the current design is in its’ utility for measuring statistical learning via an online web-platform. Researchers should be aware of the following when considering the accuracy of reaction time measurements via a web browser. de Leeuw and Motz (2016)45 found the response times measured via a web browser were approximately 25 ms longer than those measured via other standard data presentation software. Importantly, this delay was found to be constant across trials. Because our measure of real-time learning in the web-based tasks is the slope of change in reaction time, the effects of the delay in reaction time has been minimized using within-subject comparisons. de Leeuw (2015)30 has also acknowledged that reaction time measured via jsPsych may be affected by factors such as the processing speed of the computer or the number of tasks loaded in the background. To minimize these effects, we recommend normalizing response time within each individual participant before computing the response time slope30.
The current protocol, providing robust methods to demonstrate large variability in learning behavior across domains and modalities, is designed to investigate individual differences of statistical learning. However, this protocol is not suitable for investigating questions such as whether visual statistical learning is inherently easier than auditory statistical learning. The interpretation of group-level performance differences between tasks is difficult due to all the confounding factors that we are not able to control, such as stimuli familiarity14,43,46,47 , sensory salience, and processing speed28. Related to stimuli familiarity, it is well established that an individual’s prior experiences with the stimuli may influence their statistical learning performance. Additionally, the visual and auditory tasks are difficult to directly compare due to differences in the salience of the stimuli and presentation rate across these modalities. Therefore, our methods are designed with the aim of investigating individual differences in statistical learning. However, with advanced fMRI analysis approaches, our protocol is suitable for studying theoretical questions about the nature of statistical learning, for example we can ask which brain networks are sensitive to regularities in each domain and how the patterns of neural engagement differ/overlap.
The current protocol was developed to be child-friendly and easily accessible to maximize research in neurotypical and atypical populations. During the implementation of this protocol with young children or those with developmental disorders, a critical step is to give breaks between each SL task to avoid fatigue. Each condition of the web-based tasks can be disseminated individually to ease cognitive demands. Prior to scanning, the mock scanner can be used to reduce child anxiety and head motion in preparation for the real fMRI task. An additional issue researcher should be aware of relates to a general concern when conducting any neuroimaging study: motion. A rotational head movement of just 0.3 mm can cause artifacts to manifest. In an effort to minimize the likelihood of motion artifacts, the current protocol has limited each run to last less than 5 minutes48. Participants should be encouraged to stay still during each 5-minute run but allowed to move or stretch between runs in order to reduce motion during actual scanning. We also recommend rigorous data analysis techniques to correct motion-related artifacts on the fMRI data49.
Given the critical contribution of statistical learning ability on later language acquisition, it is necessary to develop more comprehensive and reliable measures that assess both real time and offline learning of statistical regularities. The current proposal is a first step towards delineating how individual differences in statistical learning ability based on domain/modality may account for variations in later language outcomes.
The current protocol, providing robust methods to demonstrate large variability in learning behavior across domains and modalities, is designed to investigate individual differences of statistical learning. However, this protocol is not suitable for investigating questions such as whether visual statistical learning is inherently easier than auditory statistical learning. The interpretation of group-level performance differences between tasks is difficult due to all the confounding factors that we are not able to control
The authors have nothing to disclose.
We thank Yoel Sanchez Araujo and Wendy Georgan for their contribution in the initial design of the web-based platform. We thank An Nguyen and Violet Kozloff for their work on improving the web-based statistical learning tasks, implementing the fMRI tasks, and piloting the tasks in adult participants. We thank Violet Kozloff and Parker Robbins for their contribution in assisting data collection in children. We thank Ibrahim Malik, John Christopher, Trevor Wigal, and Keith Schneider at the Center for Biological and Brain Imaging at the University of Delaware for their assistance in neuroimaging data collection. This work is funded in part by the National Institute on Deafness and other Communication Disorders (PI: Qi; NIH 1R21DC017576) and the National Science Foundation Directorate for Social, Behavioral & Economic Sciences (PI: Schneider, Co-PI: Qi & Golinkoff; NSF 1911462).
4 Button Inline Response Device | Cambridge Research Systems | SKU: N1348 | An fMRI reponse pad used for measuring in-scanner response time |
Short/Slim Canal Tips | Comply Foam | SKU: 40-15028-11 | Short & slim in-ear canal tips are recommended for children to protect hearing and allow for them to hear the stimuli while in the scanner. |
jsPsych | jsPsych | https://www.jspsych.org/ | jsPsych is a JavaScript library for running behavioral experiments in a web browser. |
Speech Synthesizer | Praat | Version 6.1.14 | This program is an artificial speech synthesizer which was used to create the syllable stimuli. |
Web-based statistical learning tasks | Zenodo | http://doi.org/10.5281/zenodo.3820620 (2020). | All web-based statistical learning tasks are available for free access on Zenodo. |