A protocol is presented for the synthesis of information-encoded peptoid oligomers and for the sequence-directed self-assembly of these peptoids into molecular ladders using amines and aldehydes as dynamic covalent reactant pairs and Lewis acidic rare-earth metal triflates as multi-role reagents.
This protocol presents the use of Lewis acidic multi-role reagents to circumvent kinetic trapping observed during the self-assembly of information-encoded oligomeric strands mediated by paired dynamic covalent interactions in a manner mimicking the thermal cycling commonly employed for the self-assembly of complementary nucleic acid sequences. Primary amine monomers bearing aldehyde and amine pendant moieties are functionalized with orthogonal protecting groups for use as dynamic covalent reactant pairs. Using a modified automated peptide synthesizer, the primary amine monomers are encoded into oligo(peptoid) strands through solid-phase submonomer synthesis. Upon purification by high-performance liquid chromatography (HPLC) and characterization by electrospray ionization mass spectrometry (ESI-MS), sequence-specific oligomers are subjected to high-loading of a Lewis acidic rare-earth metal triflate which both deprotects the aldehyde moieties and affects the reactant pair equilibrium such that strands completely dissociate. Subsequently, a fraction of the Lewis acid is extracted, enabling annealing of complementary sequence-specific strands to form information-encoded molecular ladders characterized by matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). The simple procedure outlined in this report circumvents kinetic traps commonly experienced in the field of dynamic covalent assembly and serves as a platform for the future design of robust, complex architectures.
Progress in self-assembly, the process by which small sub-units generate larger architectures through thermodynamically-driven pathways, has afforded improved control over macro- and supra-molecular nanostructures typically by exploiting intermolecular interactions such as π-stacking and hydrogen bonding1,2,3,4. In particular, nucleic acids (i.e., polynucleotides) have emerged as remarkably versatile nano-construction media as the high information density provided by Watson-Crick base pairing permits the assembly of complex, sequence-selective structures4,5. Whereas the inherently low strength of these transient intermolecular bonds enables sub-unit rearrangement and error-correction, the resultant structures are often susceptible to thermal and mechanical degradation6. In contrast, dynamic covalent interactions7,8,9, a class of covalent bond-forming reactions that are reversible or rearrangeable under mild conditions and have recently been employed to yield intricate macromolecules such as ladders10,11,12,13, cages14,15,16, and stacks17, offer increased bond strengths and robust structures. Unfortunately, the capacity for rearrangement and error-checking is diminished by the relatively low rearrangement rates of these covalent species, curtailing their capacity for self-assembly into desired products18. To address this kinetic trapping, catalysts or harsh reaction conditions are often utilized in conjunction with simple building blocks. Here, we report a process which circumvents kinetic trapping to enable the self-assembly of molecular ladders from sequence-specific oligomers where the hybridization is directed by the information encoded in the oligomer residue sequences.
Given their synthetic accessibility, poly(N-substituted glycine)s (i.e., peptoids) are employed as the oligomeric precursors from which the molecular ladders are assembled19. Peptoids are structural isomers of peptides in which pendant groups are affixed to the backbone-borne nitrogen instead of being coupled with the α-carbon20. Using solid-phase synthesis, exact placement of dynamic covalent pendant groups along the peptoid chain is readily achieved, allowing for the design of precursor oligomers that can assemble into complex supramolecular structures21.
The dynamic covalent rearrangement of imine connectivity is employed in this procedure as the imine-generating condensation reaction provides a convenient means to characterize the self-assembly by mass spectrometry as each bond formed results in a mass reduction of 18 g/mol22. Furthermore, the equilibrium between the amine and aldehyde reactants and imine product can be varied by altering the acid concentration. Specifically, rare-earth metal triflates are used to affect equilibrium, and additionally deprotect ethylene acetal-protected aldehydes23,24,25. To note, scandium triflate is already commonly used in the field of dynamic covalent self-assembly, including its recent success in aiding the synthesis of covalent organic frameworks (COFs) at room temperature26,27. Additionally, the contrasting solubility of the oligo(peptoid) sequences and the rare-earth metal triflate enables equilibrium control through liquid-liquid extraction. The process reported utilizes this control to circumvent the kinetic barriers preventing information-directed self-assembly.
CAUTION: Several chemicals used in this protocol are corrosive, flammable or toxic and should only be used under a chemical fume hood. Please use appropriate personal protective equipment and consult all relevant safety data sheets (SDS) before use.
1. Monomer synthesis
NOTE: Primary amines were synthesized according to published approaches.
2. Solid-phase submonomer synthesis of oligo(peptoids)
NOTE: The submonomer approach to solid-phase synthesis (SPS) was employed as it enables the production of sequence-specific oligomers with high coupling efficiency. An automated peptide synthesizer was adapted to rapidly generate oligo(peptoids). Settings may require modification for different instrumentation.
3. Sequence-selective ladder self-assembly
To demonstrate the ability of information-encoded peptoids to undergo sequence-selective dynamic covalent self-assembly into molecular ladders, a representative strand, H2N-[Npam-Neee-Npal-Neee]2-Npam-Nma, was synthesized and hybridized with its complementary peptoid sequence. The monomers Npam and Npal (characterized by 1H NMR (500 MHz), Figure 1) were employed as dynamic covalent reactant pairs with Neee aiding solubility of final self-assembled products. Additionally, the incorporation of the commercially available Nma monomer enables a mass differentiation between the two complementary sequences. Upon completion of the solid-phase submonomer synthesis, the Alloc-group was removed with Pd(PPh3)4. Prior to and after deprotection, portions of the resin were cleaved under 405 nm light and characterized by ESI-MS (Figure 2). The sequence was purified by prep HPLC, lyophilized to achieve an off-white powder, and purity confirmed with analytical HPLC (Figure 3). The oligo(peptoid) was subsequently hybridized with its complementary sequence, H2N-[Npal-Neee-Nam-Neee]2-Npal, to afford an in-registry ladder confirmed by MALDI-MS (Figure 4).
Figure 1: Monomer synthetic schemes and 1H-NMR spectra. (A) Monomer synthetic schemes with reagents and conditions: (i) allyl chloroformate, 10% aqueous acetic acid, 1,4-dioxane, room temperature, overnight; (ii) ethylene glycol, toluene-p-sulfonic acid, toluene, reflux, overnight; (iii) LiAlH4, anhydrous Et2O, 0 °C for 4 h then room temperature for 12 h; (iv) tosyl chloride, THF, 0 °C; (v) NaN3, DMF, 60 °C, 36 h; (vi) triphenylphosphine, THF, overnight. (B) Monomer 1H-NMR spectra (500 MHz, CDCl3): (i) 4-(2-aminoethyl)-N-(allylcarbonyloxy)phenylamine (Npam); (ii) 4-(1,3-dioxacyclopent-2-yl)benzylamine (Npal); (iii) 2-(2-ethoxyethoxy)ethylamine (Neee). Please click here to view a larger version of this figure.
Figure 2: Synthesis and deprotection of a sequence-specific oligo(peptoid). (A) Structures of H2N-[Npam-Neee-Npal-Neee]2-Npam-Nma before and after Alloc-protecting group removal with accompanying (B) ESI mass spectrum. Please click here to view a larger version of this figure.
Figure 3: Purification and characterization of an information-encoded peptoid. (A) HPLC chromatogram of the strand purification by preparative HPLC with a linear gradient of acetonitrile (MeCN) and water: (1) 30% MeCN, 0.1-2.1 min; (2) 30-95% MeCN, 2.1-16.1 min; (3) 95% MeCN, 16.1-23.1 min; (4) 95% MeCN, 23.1-26.1 min. Peaks i and ii correspond to low molecular weight reaction by-products, primarily DIC-urea, and oligomeric species including the desired product, respectively. (B) Analytical HPLC chromatogram and (C) ESI mass spectrum of H2N-[Npam-Neee-Npal-Neee]2-Npam-Nma after lyophilization. Please click here to view a larger version of this figure.
Figure 4: Self-assembly of H2N-[Npam-Neee-Npal-Neee]2-Npam-Nma and its complementary sequence, H2N-[Npal-Neee-Nam-Neee]2-Npal. (A) Structures of the two sequences and the resulting sequence-driven assembly. (B) MALDI mass spectrum of the molecular ladder following annealing at room temperature overnight. Masses: expected [M+Na]+ = 3306.7, found 3306.0; expected [M-1 imine+Na]+ = 3324.7, found 3323.9; expected [M-2 imine +Na]+ = 3342.7, found 3342.8; expected [M-2 imine +CH3OH+H]+ = 3352.8, found 3352.0. Please click here to view a larger version of this figure.
The technique herein describes the dynamic covalent assembly of information-bearing peptoid oligomers, where information is encoded in the sequence of their pendant groups. The use of an Alloc-protected amine monomer in conjunction with an ethylene acetal-protected aldehyde monomer allows for orthogonal deprotection, enabling Alloc deprotection on bead and acetal deprotection in situ during the self-assembly reaction, thereby ensuring the synthesized sequences do not prematurely react prior to oligomer purification and characterization. Importantly, the solid-phase synthesis is performed using a photolabile resin to enable oligomer cleavage from the bead under UV or violet light irradiation, precluding premature deprotection of the acid-labile, ethylene acetal-based protecting group. Several alternative deprotection schemes might be considered. For example, we initially employed dual acid-labile protecting groups (Boc-amine and ethylene acetal-aldehyde) with the intention of in situ deprotection by a strong acid followed with neutralization to allow the self-assembly reaction to proceed; however, this approach resulted in the immediate generation of precipitate upon addition of base. Alternatively, protection of the amine with a photolabile protecting group, 2-(2-nitrophenyl)propoxycarbonyl (NPPOC), was envisioned as the aldehyde could be selectively deprotected upon treatment with trifluoroacetic acid (TFA) prior to purification. Unfortunately, in situ photolysis of the protecting group with UV light did not afford quantitative deprotection, even in the presence of photosensitizers and after extended irradiation periods25. Trimethylsilylethoxycarbonyl (i.e., Teoc) can be employed as an amine protecting group and is subject to cleavage upon treatment with rare-earth metal triflates; however, quantitative Teoc deprotection requires much higher rare-earth metal triflate loadings than that necessary for ethylene acetal deprotection. For this protocol, Teoc-amines may be used, but the Lewis acid concentration must be adjusted accordingly as sub-quantitative amine deprotection could prove problematic for larger self-assembled structures. Aliphatic functional groups were briefly considered, but deprotection of aliphatic aldehydes requires harsh conditions that truncate peptoid sequences32,33.
Incorporation of Neee and Nma as inert spacer residues serve to improve oligomer solubility and enable facile mass-tagging of the precursor oligomers to afford ready identification of the generated species by mass spectroscopy. Furthermore, given the 'Σ-strand' conformation of peptoids where adjacent backbone segments adopt opposing rotational states to form a linear, twist-free oligomer34,35, sequences incorporating alternating dynamic covalent and inert spacer residues facilitates a structure in which reactive pendant groups are oriented in the same direction. Given the versatility of the submonomer method, a large and diverse library of primary amines can be employed to further modify the peptoid oligomers but may require adjustments to the protocol to maintain high coupling efficiency.
Whereas oligo(peptoids) can be synthesized manually in a glass reaction vessel19, automation of the process decreases the time for each residue addition from several hours to half an hour. Additionally, automation diminishes the quantity of monomer and wash solvent waste, particularly desirable when using primary amine monomers that are not commercially available. Although Alloc cleavage from the protected-amine residues is an efficient reaction, palladium oxidation can result in incomplete deprotection. Consequently, it is suggested to test cleave a portion of the resin and characterize the extent of deprotection with ESI-MS. For test cleavages, 30 min under 405 nm irradiation releases sufficient peptoid for mass spectrometry. Partial deprotection can be limited with the use of anaerobic conditions or repeating the deprotection reaction.
Whereas this article focuses on Sc(OTf)3 as a multi-role reagent, other rare-earth metal triflates, such as ytterbium triflate, have been shown to successfully mediate the information-directed assembly of molecular ladders. Notably, Sc(OTf)3 is the most Lewis acidic of the rare-earth metal triflates; thus, owing to the reduced catalytic ability afforded by other rare-earth metal triflates24,36, greater equivalents may be required to effect complete ethylene acetal deprotection and strand dissociation. The number of equivalents required can be determined with MALDI mass spectrometry by observing point at which strands completely dissociate. Dissociation is critical in the self-assembly process and is analogous to the melting of nucleic acid strands at raised temperature. The subsequent extraction of catalyst enables the formation and disruption of dynamic covalent pairings propelling the assembly of sequence-specific duplexes. This gradual annealing of the oligomeric strands circumvents the kinetic trapping (which, for molecular ladders, can yield out-of-registry species or incorrectly pair sequences) experienced by other methods.
Chloroform is an excellent solvent as phase separation in the chloroform/acetonitrile/water ternary system used here promotes the partial extraction of Lewis acid without resulting in precipitation of self-assembled structures37. Additionally, chloroform is one of the few solvents that promotes imine formation while maintaining molecular ladder solubility. Trace amounts of out-of-registry and incorrectly paired duplexes can often be observed owing to the dynamic nature of the system. Although this system is largely unaffected by small variation in rare-earth metal triflate concentrations upon extraction, on occasion, insufficient catalyst extraction generates a significant portion of incomplete hybridization and non-specific oligomer couplings. In this case, it is generally preferable to first re-dissociate with a further 1.5 equivalents of catalyst and then extract a second time rather than to re-extract immediately, as the complete dissociation of single strands is vital to the process. To simultaneously assemble several unique information-encoded molecular ladders, it may be necessary to increase the concentration of the rare-earth metal triflate stock solution used to maintain equivalents and total reaction volume.
While these self-assemblies are primarily characterized by mass spectrometry, other techniques including fluorescence resonance energy transfer (FRET) are possible. Limitations include quantity of material necessary, affordability of monomers, and signal-to-noise ratio. Techniques requiring solvents, such as 1H NMR, can additionally suffer from insolubility of self-assembled structures. Furthermore, rare-earth metal triflate concentrations post-extraction can be determined through such methods as ICP-MS or 19F NMR with an internal standard.
As progress towards improved control over macro- and supra-molecular nanostructures and materials proceeds, the challenge of designing and fabricating regular, but modifiable, assemblies arises. The protocol described in this report provides a pathway to achieve such nanostructures through sequence-selective assemblies via dynamic covalent interactions.
The authors have nothing to disclose.
This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award #DESC0012479. S.C.L. acknowledges support from the National Science Foundation Graduate Research Fellowship Program, and A.F.A. acknowledges support from Abu Dhabi National Oil Company (ADNOC).
1,4-Dioxane | Fisher Scientific | D1114 | Certified ACS |
2-(4-Hydroxyphenylazo)benzoic acid (HABA) | Millipore-Sigma | 54793 | Matrix substance for MALDI-MS; ≥99.5% |
4-(2-Aminoethyl)aniline | Ontario Chemicals | A2076 | 98% |
4-Cyanobenzaldehyde | Oakwood Chemical | 049317 | 99% |
4-Methylpiperidine | TCI America | P0445 | ≥98.0% |
4-Toluenesulfonyl chloride | Oakwood Chemical | BR1703 | 99% |
50 mL High Performance Centrifuge Tubes | VWR International | 21008-240 | Centrifuge Tubes used for automated synthesizer |
Acetic acid | Fisher Scientific | A38-212 | Glacial |
Acetic anhydride | Fisher Scientific | A10 | Certified ACS |
Acetonitrile | Millipore-Sigma | 34851 | For HPLC; Gradient grade; ≥99.9% |
All-plastic Norm-Ject syringes | Thermo Fisher Scientific | S7510-10 | Luer-Slip Syringe |
Allyl chloroformate | Acros Organics | 221741000 | 97% |
Bromoacetic acid | Alfa Aesar | A14403 | ≥98.0% |
Chloroform | Millipore-Sigma | 288306 | Anhydrous; ≥99%; Contains 0.5-1.0% ethanol as stabilizer |
Chloroform-d | Acros Organics | AC320690075 | For NMR; 99.8 atom % D; Packaged in 0.75 ml ampoules |
Dichlorodimethylsilane | Acros Organics | 1133100 | ≥99.0% |
Dichloroethane | Fisher Scientific | E175 | Certified ACS |
Dichloromethane | Fisher Scientific | D37-4 | Stabalized; Certified ACS |
Diethyl ether | Acros Organics | 615080010 | Anhydrous; ACS reagent |
Diethylene glycol monoethyl ether | TCI America | E0048 | ≥99.0% |
Ethanol | Decon Labs | 2701 | 200 Proof; Anhydrous |
Ethylene glycol | Fisher Scientific | E178 | Certified |
Fmoc-Photolabile SS resin | CreoSalus | SA50785 | 100-200 mesh; 1% DVB |
Glass Peptide Vessel | Chemglass | CG-1866-02 | Solid Phase, T-Bore PTFE Stpk, Vacuum, Medium Frit, GL 25 Thread |
LC-6AD HPLC pumps | Shimadzu Corporation | Equipment | |
LED 405nm | ThorLabs | M405L2-C1 | 405 nm LED used for photocleavage of peptoid |
LED Driver | ThorLabs | LEDD1B | Driver for LED light used in photocleavage of peptoid |
Liberty Blue Automated Peptide Synthesizer | CEM Corporation | Equipment | |
Lithium aluminum hydride | Millipore-Sigma | 199877 | Powder; Reagent grade; 95%; CAUTION: Mildly pyrophoric, handle under inert gas and protect from moisture |
Luna C18 analytical RP-HPLC column | Phenomenex | 00G-4252-E0 | Equipment |
Luna C18 prepatory RP-HPLC column | Phenomenex | 00G-4253-P0-AX | Equipment |
Methanol | Fisher Scientific | A412 | Certified ACS |
Microliter Syringe | Hamilton Company | 80700 | Cemented Needle (N) |
N,N'-Diisopropylcarbodiimide (DIC) | Oakwood Chemical | M02889 | ≥99.0%; CAUTION: DIC is hazardous to eyes, skin, via respiratory inhalation, and may cause skin sensitization |
N,N-Dimethylformamide | Millipore-Sigma | 319937 | ACS reagent; ≥99.8% |
Nitric acid | Fisher Scientific | A200-212 | Certified ACS Plus |
Nitrogen gas | Cryogenic Gases | Contents under pressure, may explode if heated | |
Phenylsilane | Oakwood Chemical | S13600 | 97% |
Prominence SPD-10A UV/vis Detector | Shimadzu Corporation | Equipment | |
p-Toluenesulfonic acid monohydrate | Millipore-Sigma | 402885 | ACS reagent; ≥98.5% |
Scandium(III) triflate | Oakwood Chemical | 009343 | 99% |
Single-use Needle | Exel International | 26420 | 18G x 1 1/2″ |
Sodium azide | Oakwood Chemical | 094448 | 99%; CAUTION: NaN3 may react with lead and copper which results in the formation of highly explosive metal azides. It is acutely toxic and fatal if swallowed or in contact with skin. |
Sodium bicarbonate | Fisher Scientific | S233 | Powder; Certified ACS |
Sodium hydroxide | Fisher Scientific | S318-100 | Pellets; Certified ACS |
Sodium sulfate | Fisher Scientific | S421-500 | Anhydrous; Granular; Certified ACS |
Syringe Filter 0.45 µm | VWR International | 28145-497 | PTFE, Syringe Filters with Polypropylene Housing |
Tetrahydrofuran | Fisher Scientific | T397 | Certified |
Tetrakis(triphenylphosphine) palladium(0) | Oakwood Chemical | 034279 | 98% |
Toluene | Fisher Scientific | T324 | Certified ACS |
Triphenylphosphine | Oakwood Chemical | 037818 | 99% |