A method for exfoliating large thin flakes of air sensitive two-dimensional materials and safely transporting them for analysis outside of a glovebox is presented.
We describe methods for producing and analyzing large, thin flakes of air-sensitive two-dimensional materials. Thin flakes of layered or van der Waals crystals are produced using mechanical exfoliation, in which layers are peeled off a bulk crystal using adhesive tape. This method produces high-quality flakes, but they are often small and can be hard to find, particularly for materials with relatively high cleavage energies such as black phosphorus. By heating the substrate and the tape, two-dimensional material adhesion to the substrate is promoted, and the flake yield can be increased by up to a factor of ten. After exfoliation, it is necessary to image or otherwise analyze these flakes but some two-dimensional materials are sensitive to oxygen or water and will degrade when exposed air. We have designed and tested a hermetic transfer cell to temporarily maintain the inert environment of a glovebox so that air-sensitive flakes can be imaged and analyzed with minimal degradation. The compact design of the transfer cell is such that optical analysis of sensitive materials can be performed outside of a glovebox without specialized equipment or modifications to existing equipment.
Various layered materials that can be exfoliated down to a single atomic layer have generated interest across a broad range of fields. However, investigation and application of many of these materials is complicated by the fact that they are unstable in air and quickly oxidize or hydrate when exposed. For example; black phosphorus is a semiconductor with a tunable direct band gap, high mobility and anisotropic optical and electrical properties1,2,3,4,5 but is unstable in air and will deteriorate in less than an hour6,7 due to interactions with oxygen8. CrI3 has been recently shown to exhibit two-dimensional ferromagnetism9,10,11 but, when exposed to air, it degrades almost instantly11.
Devices made from these materials can be protected from air by working in a glovebox and encapsulating them in a chemically inert material such as hexagonal boron nitride12,13. However, when developing these devices, it is often necessary to identify and analyze the flakes before encapsulation. This analysis requires either removing the sample from the inert environment of the glovebox or putting the analysis equipment in the glovebox. Removing the sample, even for a short time, risks damage via oxidation or hydration, while placing the necessary equipment inside a glovebox can be costly and cumbersome. To remedy this, we designed a hermetic transfer cell that safely encloses a sample, keeping it in an inert environment, so that it can be removed from the glovebox. While in the transfer cell, a sample sits 0.3 mm below a glass window to allow easy identification of flakes under a microscope as well as the use of optical analysis techniques such as photoluminescence or Raman spectroscopy.
Some two-dimensional materials, in addition to being air sensitive, are also difficult to exfoliate into thin flakes with the typical mechanical exfoliation method because a relatively high cleavage energy, relatively weak in-plane bonds, or both. Other methods, such as CVD growth14,15, liquid exfoliation16, or gold mediated exfoliation17,18 have been developed for producing thin layers but may result in less than pristine flakes and only work for certain materials. Although exfoliation of graphene at elevated temperatures has been known to produce large flakes for at least a decade19, this technique has been quantitatively characterized recently for both graphene and Bi2Sr2CaCu2Ox flakes20. Here, we demonstrate that hot exfoliation improves exfoliation yield also for black phosphorus, a material that is notoriously difficult to exfoliate. This technique, together with a hermetic transfer cell, facilitates the exfoliation and analysis of air sensitive, two-dimensional materials.
1. Hot exfoliation of 2-D materials
NOTE: This procedure is done inside a glovebox.
2. Hermetic transfer cell construction, operation, and maintenance
3. Example uses of the transfer cell
The goal of exfoliating two-dimensional materials is to isolate atomically thin layers. During the exfoliation process, flakes separate from the bulk crystal, leaving behind flakes of varying thicknesses, with a small probability for some flakes to be monolayers. By increasing the density and size of all exfoliated flakes, hot exfoliation increases the density and lateral size of thin flakes. This is accomplished by increasing the material area that makes close contact with the substrate. While in contact, gasses trapped between the material and the substrate expand during heating and are pushed out from under flakes. The removal of trapped gas allows more of the material to come into close contact with the substrate, thus increasing the amount of exfoliated flakes (Figure 1A,B) as clearly explained in Ref 20. Exfoliations of black phosphorus were performed using the typical mechanical exfoliation and hot exfoliation technique on silicon chips with 90 nm thick SiO2. By measuring the total area of deposited material on a 1 cm x 1 cm silicon chip, it can be seen (Figure 1C) that hot exfoliation deposits 6-10 times more material. We note that in our experience other materials can be picked up from HF-cleaned substrates using polycarbonate following hot exfoliation, including graphene, hexagonal boron nitride, black phosphorus, MnPSe3, and WSe2. We used a 10:1 HF:water solution to clean the SiO2 substrates over a 15 s period. Note, 10% HF etches SiO2 at a rate of 23 nm/min21 , so this process etches our substrates by 6 nm.
We now consider the effectiveness of the hermetic transfer cell (Figure 3A) in maintaining an inert atmosphere when removed from a glovebox. CrI3 is particularly sensitive to hydration and degrades within seconds when exposed to air (Figure 3D). Inside a transfer cell, however, an exfoliated CrI3 sample remained unchanged for 15 hours (Figure 3B) and only began to show signs of degradation (blisters) after 24 hours (Figure 3C). While damage on a scale too small observe optically likely occurs on a shorter timescale, these results demonstrate that the hermetic transfer cell described here slows the sample degradation rate by at least three orders of magnitude (hours inside the cell compared with seconds outside).
To demonstrate use of the transfer cell for optical analysis of air-sensitive materials, we performed polarization-resolved Raman spectroscopy on a relatively thick (> 50 nm) flake of black phosphorus (Figure 4A). The spectra were acquired using 50 µW laser excitation at 632.8 nm with a 100x objective lens. A half-wave plate was used to rotate the polarization of the excitation beam. In Figure 4B, three Raman peaks can be observed in BP at around 466, 438 and 361 cm−1, corresponding to Ag2, B2g and Ag1 vibration modes respectively, regardless of the polarization, which agrees well with previous observations in bulk BP crystals for excitation and collection along the z-axis.5,22 The peak positions do not vary with polarization angle. However, the relative intensities of these three modes change significantly with incident light polarization. The vibration mode Ag2, which has the strongest intensity variation with the excitation laser polarization, as shown in Figure 4B,C, is associated with the atomic motion along the armchair direction. Therefore, as previously reported5, this vibration mode provides an effective method to determine the armchair direction of the BP crystal and hence the crystal orientation. In Figure 4C, the Raman intensity shows two maxima within one full rotation, located at 26.5° and 206.5° with respect to the X and Y axes defined in the microscope images, and we conclude that the armchair direction of the BP is oriented at 26.5° for this flake. Similar optical spectroscopy methods can be used to determine crystal orientation and other properties, such as layer number or optical band gap, for other air-sensitive 2-D materials.
Figure 1: Distribution of material on an oxidized silicon chip. (A) Typical sample of black phosphorus exfoliated at room temperature. (B) Typical sample of black phosphorus exfoliated at 120 °C. (C) Histogram of exfoliated black phosphorus area using room temperature(cold) and hot exfoliation. Please click here to view a larger version of this figure.
Figure 2: Transfer cell. (A) Picture of a hermetic transfer cell showing separate cap and base. (B) Schematic drawing of transfer. A vent (green) is cut into the threads. Note that the bottom of the base is tapped and threaded for mounting. Please click here to view a larger version of this figure.
Figure 3: Transfer cell suppression of flake degradation. (A) Fresh CrI3 in a transfer cell (B) CrI3 in a cell after 15 h. (C) CrI3 in a cell after 24 h Hydration blisters can be seen at this point. (D) CrI3 in air after 24 h in transfer cell and 30 s in air. Large areas of hydrated CrI3 have collected at the edges of the flake. Please click here to view a larger version of this figure.
Figure 4: Crystalline orientation identification. (A) Optical micrograph of thick flakes of exfoliated BP. (B) Polarization-resolved Raman spectroscopy of a thick BP flake. (C) Polar plot of Raman intensity averaged over the spectral range in (B) as a function of linear excitation polarization angle (plot origin is zero intensity). The fit is a sine function plus a constant. The dashed line indicates the armchair direction. Please click here to view a larger version of this figure.
Hot exfoliation retains the ability of typical mechanical exfoliation to produce pristine thin flakes while also avoiding many downfalls of alternatives. Like typical mechanical exfoliation, this technique is not limited to a small subset of materials. Hot exfoliation can be applied to any material that can be exfoliated using room-temperature mechanical exfoliation as long as the material tolerates heating to 120 °C for 2 min in an inert atmosphere. We also note that it has been shown20 that the heating time and temperature (above 100 °C) do not make any noticeable difference in flake density. Along with increased contact, average flake size can also be improved by increasing the bond strength between the substrate and the flakes. One way to do this would be by treating the substrate with O2 plasma but this would also make the flakes hard or impossible to pick up for use in devices requiring heterostructure fabrication20.
The transfer cell can be constructed from any suitable metal. We used aluminum because it is easy to machine but it should be noted that TCE (used to remove epoxy) is corrosive to aluminum when unstabilized, heated, or mixed with water. Stainless steel would be more durable and less reactive with TCE. However, we have not seen any corrosive effects using this method at RT. For imaging and analysis with high numerical aperture objectives, construction of the transfer cell is such that, when closed, the bottom of the window is 0.8 mm above the top of the base. With a 0.5 mm thick substrate and 0.1 mm thick adhesive, the sample sits 0.3 mm below the top of the transfer cell. This proximity allows for imaging and analysis with high magnification and relatively short working distance objectives. Exfoliated material can be clearly seen at 5, 20, 50 times magnification allowing for easy identification of thin flakes. At higher magnifications, spherical aberrations caused by the window significantly degrades the image quality. Provided that the sample substrate is less than 0.7 mm thick, there is no risk of over tightening the cell. When the cap is screwed down, excess gas is expelled through the vent in the threads. During construction, the precise location of the vent is not important, but it is important that it is not obstructed by the sample, vacuum grease or anything else. The vent prevents the fragile 0.1 mm thick window from breaking due to overpressure when the cap is screwed down. The window can only withstand pressure changes of a few mbar.
The coverglass window used for the transfer cells is made of borosilicate glass but for optical analysis at wavelengths other than visible to near-infrared, other window materials may be use. For the best imaging, care should be taken when installing the glass window. If not seated properly, the distance between the sample and window could be larger than expected. Especially for small working distance objectives, this could cause the objective to crash into and break the window. Also, some epoxies will cure faster at higher temperatures, but because metals and glass have different thermal expansion coefficients, the widow will deform after cooling back to room temperature. The epoxy should be cured at the same temperature at which it will be used (i.e., if the cell will be used at room temperature), the epoxy should also be cured at room temperature.
The authors have nothing to disclose.
This work was supported by NSF award number DMR-1610126.
Ablestik 286 epoxy | Loctite | 256 6 OZ TUBE KIT | air-tight epoxy |
Acetone | EDM Millipore Corporation | 67-64-1 | |
Circular coverglass, 24 mm dia, 0 thickness | Agar Scientific | AGL46R22-0 | window glass |
Dicing tape | Ultron systems | 1009R | exfoliation tape |
High-Vacuum grease | Dow Corning | 1597418 | O-ring grease |
Isopropanol | VWR Chemicals | BDH20880.400 | |
Silicon wafer, 300 nm oxide | University Wafer | E0851.01 | flake substrate |
Silicon wafer, 90 nm oxide | Nova Electronic Materials | HS39626-OX | flake substrate |