Here, we present a protocol to quickly and reproducibly generate biologically inspired, biodegradable articifical antigen presenting cells (aAPC) with tunable size, shape, and surface protein presentation for T cell expansion ex vivo or in vivo.
Artificial antigen presenting cells (aAPC) are a promising platform for immune modulation due to their potent ability to stimulate T cells. Acellular substrates offer key advantages over cell-based aAPC, including precise control of signal presentation parameters and physical properties of the aAPC surface to modulate its interactions with T cells. aAPC constructed from anisotropic particles, particularly ellipsoidal particles, have been shown to be more effective than their spherical counterparts at stimulating T cells due to increased binding and larger surface area available for T cell contact, as well as reduced nonspecific uptake and enhanced pharmacokinetic properties. Despite increased interest in anisotropic particles, even widely accepted methods of generating anisotropic particles such as thin-film stretching can be challenging to implement and use reproducibly.
To this end, we describe a protocol for the rapid, standardized fabrication of biodegradable anisotropic particle-based aAPC with tunable size, shape, and signal presentation for T cell expansion ex vivo or in vivo, along with methods to characterize their size, morphology, and surface protein content, and to assess their functionality. This approach to fabricating anisotropic aAPC is scalable and reproducible, making it ideal for generating aAPC for "off-the-shelf" immunotherapies.
Artificial antigen presenting cells (aAPC) have shown promise as immunomodulatory agents because they can generate a robust antigen-specific T cell response. Essential to these platforms are their ability to efficiently present crucial signals for T cell activation. Acellular aAPC are an attractive alternative to cell-based aAPC because they are easier and less costly to fabricate, face fewer challenges during scale-up and translation, and alleviate risks associated with cell-based therapies. Acellular aAPC also allow for a high degree of control over signal presentation parameters and physical properties of the surface that will interface with T cells1.
aAPC must recapitulate a minimum of two signals essential for T cell activation. Signal 1 provides antigen recognition and occurs when the T cell receptor (TCR) recognizes and engages with an MHC class I or II bearing its cognate antigen, culminating in signaling through the TCR complex. To bypass the antigen specificity requirement, aAPC systems often bear an agonistic monoclonal antibody against the CD3 receptor, which nonspecifically stimulates the TCR complex. Recombinant forms of MHC, particularly MHC multimers, have also been used on the surface of aAPC to provide antigen specificity2,3. Signal 2 is a costimulatory signal that directs T cell activity. To provide the costimulation necessary for T cell activation, the CD28 receptor is generally stimulated with an agonistic antibody presented on the aAPC surface, although other costimulatory receptors such as 4-1BB have been successfully targeted4. Signal 1 and 2 proteins are typically immobilized on the surface of rigid particles to synthesize aAPC. Historically, aAPC have been fabricated from a variety of materials, including polystyrene4,5 and iron dextran6. Newer systems utilize biodegradable polymers like poly(lactic-co-glycolic acid) (PLGA) to generate aAPC that can be easily coupled to signal proteins, are suitable for direct administration in vivo, and can facilitate the sustained release of encapsulated cytokines or soluble factors to augment T cell activation7,8.
In addition to the presence of necessary signal proteins, receptor engagement over a sufficiently large surface area during the aAPC/T cell interaction is essential for T cell activation. Thus, physical parameters of the aAPC such as size and shape drastically alter their available contact area and affect their ability to stimulate T cells. Micron-sized aAPC have been shown to be more effective at stimulating T cells than their nanoscale counterparts9,10. However, nano-aAPC can have superior biodistribution and better drainage to the lymph nodes that may enhance their performance in vivo over micro-aAPC11. Shape is another variable of interest in particle-based aAPC systems. Anisotropic aAPC have recently been shown to be more effective than isotropic particles at stimulating T cells, mainly due to enhanced interaction with target cells coupled with reduced non-specific cell uptake. Cells preferentially bind to the long axis of ellipsoidal particles, and the larger radius of curvature and flatter surface allow for more contact between the aAPC and T cell12. The long axis of ellipsoidal particles also discourages phagocytosis, resulting in increased circulation time compared to spherical particles following in vivo administration12,13. Because of these advantages, ellipsoidal particles mediate greater expansion of antigen-specific T cells in vitro and in vivo compared to spherical particles, an effect observed at both the micro and nanoscales12,13. There are various strategies to fabricate anisotropic particles, but thin-film stretching is a simple, widely accepted method used to generate a range of diverse particle shapes14. Following synthesis, particles are cast into films and stretched in one or two dimensions at a temperature above the glass transition temperature of the particle material. The film is then dissolved to retrieve the particles. Despite growing interest in anisotropic particles, current approaches for fabricating particle-based aAPC are mostly limited to isotropic systems, and methods of altering particle shape can be difficult to implement, incompatible with certain aAPC synthesis strategies, and lack precision and reproducibility15. Our thin-film stretching technique can be performed manually or in an automated fashion to rapidly generate anisotropic particles synthesized from a variety of biodegradable polymers, stretched to a desired aspect ratio in one or two dimensions15.
Based on our previous work, we developed a biodegradable particle-based approach combined with scalable thin-film stretching technology to rapidly generate aAPC with tunable size and shape in a standardized fashion for T cell expansion ex vivo or in vivo. Our protein conjugation strategy can be used to couple any protein(s) of interest to carboxyl groups on the particle surface at a desired density, giving this aAPC system a high degree of flexibility. We also describe methods to characterize the size, morphology, and surface protein content of aAPC, and to evaluate their functionality in vitro. This protocol can be easily adapted to expand immune cells ex vivo or in vivo for a variety of immunotherapeutic applications.
All methods described here have been approved by the Institutional Animal Care and Use Committee (IACUC) of Johns Hopkins University.
1. Fabrication of Spherical PLGA Particles of Tunable Size
2. Fabrication of Polymeric Particles of Tunable Shape
3. Surface Protein Conjugation to Create Artificial Antigen Presenting Cells
4. Characterization and Evaluation of aAPC
A schematic for the automated 2D thin film stretching device is given in Figure 1. A schematic and description for a 1D thin film stretching device is given in Ho et al.17 The stretcher is constructed from aluminum parts using standard milling and machining techniques. Similar to the 1D stretcher, the 2D stretcher consists of metallic grips and guide rails. Bidirectional lead screws are used to translate linear to rotational motion. The lead screws are the attached via mechanical taps to identical stepper motors with sufficient torque. The 8 stepper motor control wires can be soldered onto 8-pin heat-resistant amphenol connectors for easy attachment to the control console in an oven for thin film stretching. Polytetrafluoroethylene (PTFE) coated wire of sufficient length must be used to connect the stepper motors to the drivers in the control console. The recommended computer control scheme is given in Figure 1A. The two motors must be connected through heat resistant wiring to 2 independent drivers. The two drivers must then be connected to a microcontroller to interface with a computer. The drivers should be connected to the X-Axis and Y-Axis outputs on the microcontroller. The drivers and microcontroller both require an external power supply. Prior to connecting the power supply to these three components it is recommended that a 4 A fuse be inserted in between each of the powered connections to protect the components from current overload. Finally, the microcontroller can be linked via a Parallel Port Input to a computer using a DB25 Male to Male cable. The electronics used to control the stepper motors are heat sensitive and therefore must be placed outside of any heat source (such as an oven) used during operation to heat the thin films to sufficient temperature to enable stretching. Although the recommended motors are heat resistant up to the temperatures specified in this protocol for stretching particles, the motors and drivers will build up additional heat while they are attached to the main power supply. Therefore, it is recommended that the device only be turned on during the period of actual film stretching to minimize potential heat build-up.
PLGA nano- and microparticles were synthesized using the single emulsion techniques described in this protocol and imaged using TEM (Figure 3A) and SEM (Figure 3B), respectively. Spherical nanoparticles had a diameter of 237.3 ± 4.0 nm as measured by DLS and 224 nm as measured by NTA (Figure 3C). Microparticles were synthesized by homogenization at 5000 rpm to generate spherical particles with an average diameter of 3 ± 1 μm (Figure 3D). The particles were stretched using the automated film stretching device at 90 °C in one dimension to generate prolate ellipsoidal nano- and microparticles and stretched at 70 °C in two dimensions to generate oblate ellipsoidal particles. The aspect ratios of the microparticles of all three shapes were analyzed by measuring the long axis and short axis distance of particles and dividing the two. Spherical microparticles had an aspect ratio of 1.05 ± 0.04, while 1D stretched prolate ellipsoidal particles had a larger aspect ratio of 3.6 ± 0.8 (Figure 3E). 2D stretched oblate ellipsoidal particles had an aspect ratio of 1.2 ± 0.2, roughly maintaining an aspect ratio of one.
EDC/NHS reaction chemistry was used to conjugate a fluorescently labelled peptide-loaded MHC IgG dimer and anti-CD28 antibody to the surface of stretched and spherical PLGA particles. Conjugation efficiency results demonstrate similar amounts of protein on the surface of spherical and ellipsoidal micro-aAPC (Figure 4A) and nano-aAPC (Figure 5A) and demonstrate that protein coupling during aAPC synthesis occurs in a concentration-dependent manner. To evaluate the effect of shape on aAPC functionality, spherical and prolate ellipsoidal aAPC conjugated with gp100-loaded MHC IgG dimer and anti-CD28 were used to stimulate PMEL transgenic CD8+ T cells. T cells were labelled with CFSE and evaluated by flow cytometry after 3 days to assess proliferation (Figure 4B, 5B). Prolate ellipsoidal aAPC were found to induce higher levels of T cell proliferation at sub-saturating doses than spherical aAPC, with the best separation achieved at a 0.01 mg dose. After 7 days, the T cells were manually counted. Prolate ellipsoidal aAPC more effectively stimulated T cells compared to their spherical counterparts at the microscale (Figure 4C) and nanoscale (Figure 5C), and dose-dependent T cell expansion was observed.
Figure 1: Schematic representation of automated thin film stretcher. (A) Schematic of control console for thin film stretcher. (B) Schematic of mechanical hardware for thin film stretcher. (Left) Overhead view of mechanical hardware. (Right) Cross-section of gripping mechanism for thin films. Please click here to view a larger version of this figure.
Figure 2: Photographs of assembled automated thin film stretcher to stretch polymeric particles into anisotropic shapes. The 2D thin film stretching device is composed of two axes with aluminum mounts that grip the film. The two axes contain lead screws in opposing directions so that they move apart from each other. To automate the stretching procedure, a USB linked microcontroller is connected to two stepper motor drivers that relay signals to unipolar stepper motors through a thermal cable. Please click here to view a larger version of this figure.
Figure 3: Size and aspect ratio analysis of spherical and ellipsoidal PLGA particles. (A) TEM and (B) SEM images of spherical, 1D stretched prolate ellipsoidal, and 2D stretched oblate ellipsoidal PLGA (A) nanoparticles and (B) microparticles. (C) Spherical nanoparticles were sized by NTA and determined to be 224 nm in diameter. SEM images of PLGA microparticles were analyzed for (D) size distribution of spherical particles and (E) aspect ratios of all particle shapes. (C) Reproduced and adapted with permission from Small13, Copyright Wiley-VCH 2015. Please click here to view a larger version of this figure.
Figure 4: Characterization and functional assessment of spherical and prolate ellipsoidal micro-aAPC. (A) Conjugation efficiency of fluorescently-labelled peptide-loaded MHC IgG dimer and anti-CD28 antibody to the surface of spherical and prolate ellipsoidal microparticles. (B) CD8+ T cells were labelled with CFSE and incubated with spherical and 1D-stretched micro-aAPC at 0.01, 0.1, and 1 mg doses, or non-cognate controls. After 3 days, cells were evaluated by flow cytometry to assess proliferation. (C) T cells were also evaluated after 7 days by manual counting. Cell counts were normalized to the initial count to calculate fold-expansion. For comparison between prolate ellipsoidal and spherical fold expansion, * = p < 0.05, ** = p < 0.01, and *** = p < 0.001. Error bars represent standard error of the mean (SEM) for 3 replicates. Reproduced and adapted with permission from Biomaterials12, Copyright Elsevier 2014. Please click here to view a larger version of this figure.
Figure 5: Characterization and functional assessment of spherical and prolate ellipsoidal nano-aAPC. (A) Conjugation efficiency of fluorescently-labelled peptide-loaded MHC IgG dimer and anti-CD28 antibody to the surface of spherical and prolate ellipsoidal nanoparticles. (B) CD8+ T cells were labelled with CFSE and incubated with spherical and prolate ellipsoidal nano-aAPC of varying fold-stretch at 0.01, 0.1, and 1 mg doses. After 3 days, cells were evaluated by flow cytometry to assess proliferation. (C) T cells incubated with prolate ellipsoidal particles of varying fold stretch (ranging from 1.5 to 3.5) were also evaluated after 7 days by manual counting. Cell counts were normalized to an untreated condition to calculate fold-expansion. * = p < 0.05, ** = p < 0.01, and *** = p < 0.001 compared to spherical. Error bars represent standard error of the mean (SEM) for 3 replicates. Reproduced and adapted with permission from Small13, Copyright Wiley-VCH 2015. Please click here to view a larger version of this figure.
This protocol details a versatile method for the precise generation of anisotropic polymeric particles. The thin film stretching technique described here is scalable, highly reproducible and inexpensive. Alternative techniques for generating anisotropic particles suffer from many limitations, including high cost, low throughput, and limited particle size. The thin film stretching approach is also advantageous because the particles are modified to be anisotropic after synthesis, and, as a result, is compatible with a wide range of particle sizes and synthesis techniques. Figure 1 details the setup of the automated two-dimensional stretching device. This device can also be used without the electronic components by manually turning the screws until the film has reached the desired degree of stretching. However, we have found that the automated process is much more consistent and rapid than manual operation15. Various techniques have been developed to synthesize anisotropic particles, such as microfluidic approaches17,18,19, layer-by-layer coating21, and other bottom-up synthesis approaches21,22. However, these approaches do not enable strong control over particle geometry and are not as versatile in terms of shapes that can be generated and particle materials that can be used. A popular top-down method for fabricating nonspherical particles is Particle Replication in Non-Wetting Templates (PRINT)24. Although PRINT enables precise control over particle shape, it requires expensive machinery and is not as accessible and simple to implement as the thin film stretching method.
The single emulsion technique can be used to fabricate PLGA particles of various sizes, ranging from the nano to microscale12,13. By varying homogenization speed or sonication amplitude, microparticle and nanoparticle size, respectively, can be modulated. Once spherical particles have been generated, the thin film stretching method described here can be used to deform the particles into various shapes15. In this protocol, we describe the generation of prolate and oblate ellipsoidal particles by stretching in one or two dimensions, respectively. Spherical particles are cast into a thin plastic film, which is heated above the glass transition temperature of PLGA and stretched in one or two dimensions to deform the particles. The aspect ratio of the particles is highly controllable. By tuning the degree of film stretch, the aspect ratio of the particles can be modulated, and we have found that measured particle aspect ratio is highly correlated with the predicted value12,13. Various other shapes can be generated by modifying the temperature during stretching or the degree of stretching. For example, biconcave discoidal particles resembling the shape of red blood cells can be generated by stretching microparticles 1.5-fold in two dimensions at 90 °C.15. This film stretching technique has also been used to transform spherical polystyrene particles into many anisotropic shapes, including worms, barrels, and rectangular discs21. The film stretching device can be used by manually controlling the screws or the device can be automated as shown in Figure 1 to make the process more efficient and consistent15. This simple technique reliably produces anisotropic particles that retain their shape under physiologic conditions24. Furthermore, this method has been applied to other polymeric materials, in addition to PLGA, such as polycaprolactone (PCL) and hybrid particles made of PLGA and poly(beta-amino ester) (PBAE).
This protocol also describes how PLGA particles of varied size and shape can be conjugated with the surface proteins required for CD8+ T cell activation to act as aAPC. Proteins can be covalently conjugated to anisotropic and spherical PLGA micro- and nanoparticles by EDC/NHS mediated coupling of primary amines on proteins to carboxyl groups on the particle surface. The efficiency of protein conjugation can be measured by coupling fluorescently labeled protein to the surface of particles as described in this protocol, and we have found that this technique couples protein to particles at 15-20% efficiency12,13. Prolate ellipsoidal micro- and nanoparticle aAPC are more effective than their spherical counterparts at activating CD8+ T cell proliferation and expansion in vitro12,13. Ellipsoidal aAPC have enhanced binding to and interaction with T cells due to their larger surface area for contact12. Anisotropic particles also have superior properties over spherical particles in vivo due to their enhanced biodistribution and resistance to phagocytosis13. This platform is highly modular and has the potential to be adapted to many other drug delivery applications. Using this procedure, polymeric particles of tunable shape and size can be generated and the particle surface can be conjugated with any protein of interest.
The authors have nothing to disclose.
EBA (DGE-1746891) and KRR (DGE-1232825) thank the NSF Graduate Research Fellowship program for support. RAM thanks the National Research Service Award NIH NCI F31 (F31CA214147) and the Achievement Rewards for College Scientists Fellowship for support. The authors thank the NIH (R01EB016721 and R01CA195503), the Research to Prevent Blindness James and Carole Free Catalyst Award, and the JHU Bloomberg-Kimmel Institute for Cancer Immunotherapy for support.
Poly(vinyl alcohol), MW 25000, 88% hydrolyzed | Polysciences, Inc. | 02975-500 | |
Glycerol | Sigma-Aldrich | G9012 | |
Digital Thermometer | Fluke | N/A | Model name: Fluke 52 II |
Immersion Temperature Probe | Fluke | N/A | Model name: Fluke 80PK 22 |
Digital Hotplate & Stirrer | Benchmark Scientific | H3760-HS | |
Multipoint stirrer | Thermo Fisher Scientific | 50093538 | |
Resomer RG 504 H, Poly(D,L-lactide-co-glycolide) | Sigma-Aldrich | 719900 | |
Dichloromethane | Sigma-Aldrich | D65100 | |
Homogenizer | IKA | 0003725001 | |
Sonicator | Sonics & Materials, Inc. | N/A | Model number: VC 505 |
Sonicator sound abating enclosure | Sonics & Materials, Inc. | N/A | Part number: 630-0427 |
Sonicator probe | Sonics & Materials, Inc. | N/A | Part number: 630-0220 |
Sonicator microtip | Sonics & Materials, Inc. | N/A | Part number: 630-0423 |
High speed centrifuge | Beckman Coulter | N/A | Model number: J-20XP (discontinued), alternative model: J-26XP |
High speed centrifuge rotor | Beckman Coulter | 369691 | Model number: JA-17 |
High speed polycarbonate centrifuge tubes | Thermo Fisher Scientific | 3118-0050 | 50 mL, screw cap |
Rectangular disposable petri dish | VWR International | 25384-322 | 75 x 50 x 10 mm |
Square disposable petri dish | VWR International | 10799-140 | 100 mm x 100 mm |
LEAF Purified anti-mouse CD3ε Antibody | Biolegend | 100314 | |
InVivoMab anti-mouse CD28, clone 37.51 | Bio X Cell | BE0015-1 | |
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride | Sigma-Aldrich | E6383 | |
N-Hydroxysulfosuccinimide sodium salt | Sigma-Aldrich | 56485 | |
MES | Sigma-Aldrich | M3671 | |
Alexa Fluor 488 anti-mouse CD3 Antibody | Biolegend | 100212 | |
APC anti-mouse CD28 Antibody | Biolegend | 102109 | |
Corning 96 Well Solid Polystyrene Microplate | Sigma-Aldrich | CLS3915 | flat bottom, black polystyrene |
Protein LoBind Tubes, 1.5 mL | Eppendorf | 22431081 | |
RPMI 1640 Medium (+ L-Glutamine) | ThermoFisher Scientific | 11875093 | |
Fetal Bovine Serum | Sigma-Aldrich | F4135 | Heat Inactivated, sterile-filtered |
Ciprofloxacin | Sigma-Aldrich | 17850 | |
2-Mercaptoethanol | Sigma-Aldrich | M6250 | |
Recombinant Human IL-2 (carrier-free) | Biolegend | 589102 | |
Sodium Pyruvate (100 mM) | ThermoFisher Scientific | 11360070 | |
MEM Non-Essential Amino Acids Solution (100X) | ThermoFisher Scientific | 11140050 | |
MEM Vitamin Solution (100X) | ThermoFisher Scientific | 11120052 | |
CD8a+ T Cell Isolation Kit, mouse | Miltenyi Biotech | 130-104-075 | |
CellTrace CFSE Cell Proliferation Kit | ThermoFisher Scientific | C34554 | |
LS Columns | Miltenyi Biotech | 130-042-401 | |
MidiMACS Separator | Miltenyi Biotech | 130-042-302 | |
MACS Multistand | Miltenyi Biotech | 130-042-303 | |
Flow Cytometer | Accuri C6 | ||
Synergy 2 Multi-Detection Microplate Reader | BioTek | ||
autoMACS Running Buffer | Miltenyi BIotech | 130-091-221 | |
Cell Strainer | ThermoFisher Scientific | 22363548 | Sterile, 70 µm nylon mesh |
ACK Lysing Buffer | ThermoFisher Scientific | A1049201 | |
C57BL/6J (Black 6) Mouse | The Jackson Laboratory | 000664 | Male, at least 7 weeks old |
U-Bottom Tissue Culture Plates | VWR | 353227 | Sterile, 96-well tissue culture treated polystyrene plates |
40 V DC Power Supply | Probotix | LPSK-4010 | |
PTFE Coated Wire | Mouser | 602-5858-100-01 | This is for a 100 ft. spool but an equivalent wire will work |
Stepper Motor Driver | Probotix | MondoStep5.6 | |
IDC Connector Kit | Probotix | IDCM-10-12 | |
Microcontroller | Probotix | PBX-RF | |
4A Fuses | Radio Shack | 2701026 | Equivalent fuses will work as well |
DB25 Male to Male Cable | Probotix | DB25-6 | |
USB-A to USB-B Cable | Staples | 2094915 | Equivalent cable will work as well |
8-Pin Amphenol Connectors Male and Female | Mouser | 654-97-3100A-20-7P and 654-97-3106A20-7S | |
Stepper Motor | Probotix | HT23-420-8 | |
Right Hand Lead Screw | Roton | 60722 | |
Left Hand Lead Screw | Roton | 60723 | |
Screws | McMaster Carr | 92196A151 | |
Neoprene Rubber | McMaster Carr | 8698K51 | |
Right Handed Flanged Lead Nut | Roton | 91962 | |
Left Handed Flanged Lead Nut | Roton | 91963 | |
Linux Control Computer | Probotix | LCNC-PC | Any computer with matching specification and Linux operating system will work |
Corning bottle-top vacuum filter system | Sigma-Aldrich | CLS431097 | |
Trypan Blue Solution, 0.4 % | ThermoFisher Scientific | 15250061 |