This protocol presents a novel in vitro bead assay that more appropriately models the process of in vivo sprouting angiogenesis by incorporating pericytes. This modification enables the bead assay to more faithfully recapitulate the heterotypic cellular interactions between endothelial cells and mural cells that are critical for angiogenesis.
Angiogenesis is the growth of new vessels from pre-existing vasculature and is an important component of many biological processes, including embryogenesis and development, wound healing, tumor growth and metastasis, and ocular and cardiovascular diseases. Effective in vitro models that recapitulate the biology of angiogenesis are needed to appropriately study this process and identify mechanisms of regulation that can be ultimately targeted for novel therapeutic strategies. The bead angiogenesis assay has been previously demonstrated to recapitulate the multiple stages of endothelial sprouting in vitro. However, a limitation of this assay is a lack of endothelial – mural cell interactions, which are key to the molecular and phenotypic regulation of endothelial cell function in vivo. The protocol given here presents a methodology for the incorporation of mural cells into the bead angiogenesis assay and demonstrates a tight association of endothelial cells and pericytes during sprouting in vitro. The protocol also details a methodology for effective silencing of target genes using siRNA in endothelial cells for mechanistic studies. Altogether, this protocol provides an in vitro assay that more appropriately models the diverse cell types involved in sprouting angiogenesis, and provides a more physiologically-relevant platform for therapeutic assessment and novel discovery of mechanisms of angiogenesis regulation.
Angiogenesis is vital to appropriate embryogenesis and wound healing, and it also plays key roles in numerous diseases including cancer progression1 and coronary artery disease.2,3 Having a better understanding of how angiogenesis occurs during normal development, and how it is reactivated in pathologic contexts, is critical for the development of novel, effective therapeutics. Faithful in vitro models that recapitulate the important stages and cell types involved in angiogenesis in vivo are needed to allow researchers to better characterize the molecular mechanisms driving angiogenesis and make novel discoveries in endothelial regulation.
Nakatsu and Hughes have optimized a sprouting bead assay that they have demonstrated undergoes the many known stages of sprouting angiogenesis.4,5 The purpose of the method presented here is to build upon the assay optimized by Nakatsu and Hughes by incorporating perictyes into the assay, so that the paracrine and juxtracrine roles of mural cells in endothelial cell sprouting can be incorporated in novel angiogenesis studies. Pericytes are mural cells that are defined by their role as cells that maintain close physical contact with endothelial cells due to their being embedded in the vascular basement membrane.6 Pericytes and endothelial cells engage in complex cross-talk via signaling pathways including Notch signaling, Ang-Tie2, PDGFRβ, TGFRβ, and many others.7,8 Mouse models deficient in these signaling pathways demonstrate poor pericyte coverage of developing vasculature in embryogenesis, leading to poor vascular remodeling and dysfunctional vasculature.7 In addition, the role of pericytes in pathologic angiogenesis is important but oftentimes under-appreciated. For example, a unique feature of tumor vasculature is that the vessels are more immature, leaky, and dysfunctional due to poor pericyte coverage.9 It has been proposed that the presence or absence of pericytes dramatically impacts the phenotype of tumor blood vessels and is an important mediator of responses to antiangiogenic and antitumor therapies.9 Thus, including the role of pericytes in in vitro assays is key to more completely capture the important mechanisms of endothelial regulation.
Although there are many in vitro and ex vivo assays currently employed to study angiogenesis, there are shortcomings to consider in each. Some, such as endothelial proliferation and endothelial migration assays, are overly simplified and focus on one endothelial function in an isolated setting on tissue culture plastic.10 Other assays occur in a more 3 dimensional (3D) setting, such as the Matrigel tube formation assay,10 but these assays are still oversimplified and focus more on the ability of endothelial cells to migrate and form de novo vascular structures, as opposed to sprouting from pre-existing vasculature. Furthermore, none of these assays incorporate mural cell types. There are ex vivo models such as the ring aorta assay that do incorporate pericytes present in the host organ, but genetic manipulation of these models is much more challenging due to the necessity of generating knockout or transgenic mouse models of the pathways of interest. The bead sprouting assay is ideal because it models endothelial sprouting, proliferation, migration, and even anastomosis and lumen formation in a 3D matrix.4 The assay faithfully allows for mechanistic assessment of the many different stages of sprouting, while still allowing for direct genetic modification of either the endothelial cells or pericytes in a more controlled setting. The fibrin clots containing the sprouting beads can be easily fixed, stained, and imaged at different stages of sprouting; these sprouts can also be placed in a live imaging chamber to perform real-time imaging of sprouting. The methodology presented here is ideal for studying basic mechanisms of angiogenesis through in depth phenotyping and thorough analysis of the pathways activated during angiogenesis.
Day 1:
1. Transient Transfection of Endothelial Cells
Day 2
2. Coating of Microcarrier Beads with Endothelial Cells
3. Sequential Coating of Pericytes on HUVEC-Coated Microcarrier Beads
Day 3
4. Preparation of Fibrin Gel Solutions
5. Preparing Beads for Gel Implantation
6. Embedding Coated Beads in a Fibrin Gel
7. Plating Fibroblasts on Top of the Fibrin Gel
8. Observe sprouting over the course of 2-7 days following bead implantation in the fibrin gel. The length of time required for sprouting will depend on the passage and lot number of HUVEC.
9. Fixation of Sprouting Assay
10. Staining of Sprouting Assay
11. Sprouting Assay Quantification
This protocol allows for a tight association of the two cell types in vitro, and the presence of the pericytes complements the occurrence of sprouting (Figure 1A, B). The protocol also enables effective silencing (e.g. via RNA interference) of a gene of interest in a cell type of interest (such as VEGFA specifically in endothelial cells or PDGFRβ in pericytes)7,12 during the assay, which can translate to inhibition of sprouting phenotype in the assay. Researchers employing this protocol are encouraged to perform a standard endothelial cell-only sprouting assay in parallel to the pericyte-coated sprouting assay to more thoroughly investigate the unique contributions of pericytes in the vascular functions and phenotypes being studied.
The conditions described within this protocol are important to adhere to in order to obtain sufficiently-coated beads (Figure 2A, B) that will be able to undergo robust sprouting in the fibrin gel. The authors have found that an excess of pericytes (such as pericytes coated at a ratio of 1 10T1/2 to 1 HUVEC) result in pericyte overgrowth of the entire well and subsequent inability to discern distinct vascular structures within the well.
Figure 1. Pericytes tightly associate with endothelial vessels in the bead sprouting assay. (A) Standard sprouting assay with HUVEC only coated beads. (B) Confocal microscopy images of the pericyte sprouting assay demonstrate that pericytes wrap around endothelial vessels in the sprouting assay, but do not hinder their sprouting. Blue is Hoechst (nuclear stain); red is CD31 (endothelial stain), and green is Desmin (pericyte stain). All scale bars, 50 µm. Please click here to view a larger version of this figure.
Figure 2. Coated beads have a rough, golf-ball like appearance. Naked microcarrier beads (A) have a completely smooth surface, whereas appropriately-coated beads ready for fibrin gel implantation (B) have a rough, golf ball-like appearance. Scale bar, 50 µm. Please click here to view a larger version of this figure.
This protocol presents a method for characterizing the complex stages and heterotypic cellular interactions of sprouting angiogenesis by enabling the researcher to employ genetic and imaging approaches to conduct thorough mechanistic investigations. When performing the assay, it is essential that efficient endothelial coating of the beads takes place during the bead agitation steps. Poor endothelial coating will be made evident, if the beads do not appear to have a golf ball-like rough surface the next morning prior to gel implantation and instead appear completely smooth. Take care to ensure that the beads are sufficiently resuspended during each agitation step by vigorously agitating the tubes to allow maximum exposure of the bead surface to the endothelial cells, but not so aggressively that it causes the endothelial cells already attached to become detached from the beads.
When adding pericytes into the assay, it is essential that the ratio of 5 endothelial cells to 1 pericyte is maintained. An excess of pericytes causes them to overgrow and overtake the endothelial cell populations during the assay, and a deficiency in pericytes causes poor coverage of the vessels. If the appropriate cell density is maintained but poor pericyte coverage of the vessels is still observed, agitation time with pericytes may need to be modified. It is not recommended that the cell numbers are altered. An alternative approach may be to coat the beads with endothelial cells only for 4 h, then remove the endothelial cells from the media by resuspending the bead and cell solution and removing the media once the beads have settled but before the cells have settled, then adding in pericytes and agitating every 20 min for an additional hour.
When embedding the coated beads in the fibrin clot, it is also essential to not disturb the integrity of the gel by disrupting the plate during clot formation. Disruption of the matrix formation may result in aberrant sprouting. It is also essential to ensure that the appropriate bead density is maintained in the gel. If the population of beads is too dense, then beads in close proximity to one another will affect the sprouting of neighboring beads and will begin to sprout towards one another and anastomose. Depending on the ultimate goal of the researcher and interest in characterizing vessel-vessel interactions, the bead density may need to be modified. However, a heterogeneous population of isolated beads and beads in close proximity to one another within the gel may give largely variable sprouting phenotypes. Bead density can be adjusted by altering the volume of bead solution added to the FACS tubes during the agitation step of the protocol, or by altering the volume of fibrin solution used to resuspend the beads prior to gel implantation.
It is also essential that healthy NHLFs at a density of 20,000 cells per mL are plated on top of each fibrin clot. Please note that the continuous supply of growth factors supplied by the actively dividing NHLFs are necessary for robust sprouting during the assay. NHLF-conditioned EGM2 is not a sufficient alternative.13 If poor sprouting is observed during the assay, it is recommended that a fresh bottle of complete media and a new, healthy passage of NHLF cells are used.
Although this assay begins to address the cellular and phenotypic complexity of angiogenesis at a greater resolution, it still represents an oversimplified system relative to the true, in vivo context. In addition, the sprouting angiogenesis occurring in this assay is more analogous to a healthy, physiological context as opposed to a pathologic context such as tumor angiogenesis. Future applications of this method may include the introduction of additional cell types (such as immune cell populations that modulate angiogenic responses) to further recapitulate the heterotypic cellular interactions involved in this complex process. The introduction of external stressors – such as a tumor embedded in close proximity to the sprouting vessels in the fibrin gel – to simulate pathologic angiogenesis in vitro may also be employed to allow more thorough, mechanistic characterization of the molecular pathways activated in pathological contexts. These advances will be important for improving the ability of researchers to study the complex stages of angiogenesis in a more controlled setting, ultimately enabling discovery and more in-depth characterization of novel therapeutic pathways for targeting pathologic angiogenesis.
The authors have nothing to disclose.
We thank Drs. Victoria Bautch and Joshua Boucher for helpful discussions and advice on optimizing standard bead sprouting assay conditions and a sprouting assay staining protocol. S.H.A. was supported in part by a grant from the National Institute of General Medical Sciences under award 5T32 GM007092.
Sterile Pipette tips | VWR | ||
Pipettors | Eppendorf | ||
Complete EGM2 Media Bullet Kit | Lonza | CC-3162 | HUVEC Media |
MEM | Gibco | 11095114 | 10T1/2 Media |
DMEM | Gibco | 11965118 | NHLF Media |
Tissue culture-grade PBS | Gibco | 14190-144 | Magnesium and calcium free |
Accutase | Life Technologies | A1110501 | For lifting HUVEC |
Trypsin | Life Technologies | 15050065 | For lifting 10T 1/2 and NHLF |
Customs siRNAs | Sigma | ||
Lipofectamine RNAiMax | Life Technologies | 13778150 | |
HUVEC | Lonza | C2517A | |
10T 1/2 | ATCC | ||
NHLF | ATCC | ||
Cytodex 3 microcarrier beads | Sigma | C3275 | |
Tissue culture-coated 6 and 10 cm plates | Corning | ||
Fibrinogen from bovine plasma | Sigma | F8630 | |
Thrombin | Sigma | t9549 | |
Aprotinin | Sigma | a3428 | |
Falcon Round-Bottom Tubes | Corning | ||
Tissue culture incubator and hood | |||
24-well glass bottom plates | MatTek | P24G1.513F | Glass-bottom plates are needed only if the sprouts are going to be imaged. If not, tissue culture plastic is also acceptable. |
Sterile Filtration Device |