Quantitative analysis of cell content within the murine sciatic nerve is difficult due to the scarcity of the tissue. This protocol describes a method for tissue digestion and preparation that provides sufficient cells for flow cytometry analysis of immune cell populations from nerves of individual mice.
Nerve-resident immune cells in the peripheral nervous system (PNS) are essential to maintaining neuronal integrity in a healthy nerve. The immune cells of the PNS are affected by injury and disease, affecting the nerve function and the capacity for regeneration. Neuronal immune cells are commonly analyzed by immunofluorescence (IF). While IF is essential for determining the location of the immune cells in the nerve, IF is only semi-quantitative and the method is limited to the number of markers that can be analyzed simultaneously and the degree of surface expression. In this study, flow cytometry was used for quantitative analysis of leukocyte infiltration into sciatic nerves or dorsal root ganglions (DRGs) of individual mice. Single cell analysis was performed using DAPI and several proteins were analyzed simultaneously for either surface or intracellular expression. Both sciatic nerves from one mouse that were treated according to this protocol generated ≥ 30,000 single nucleated events. The proportion of leukocytes in the sciatic nerves, determined by expression of CD45, was approximately 5% of total cell content in the sciatic nerve and approximately 5-10% in the DRG. Although this protocol focuses primarily on the immune cell population within the PNS, the flexibility of flow cytometry to measure a number of markers simultaneously means that the other cells populations present within the nerve, such as Schwann cells, pericytes, fibroblasts, and endothelial cells, can also be analyzed using this method. This method therefore provides a new means for studying systemic effects on the PNS, such as neurotoxicology and genetic models of neuropathy or in chronic diseases, such as diabetes.
Immune cells which enter the PNS from the circulation, as defined by the expression of CD45 and CD11b, help to maintain the integrity of the nerve and play a role both in regeneration and degeneration1. Macrophages (defined by their expression of CD68 in mouse) can be skewed towards an inflammatory phenotype, expressing more MHC class II and CD86 on their surface (M1), or towards an anti-inflammatory phenotype, expressing more intracellular CD206 (M2)2. Skewing of the macrophage phenotype is a dynamic process regulated through Akt signaling3, reflecting the different tasks of macrophages in the defense against pathogens (M1) and the role in tissue regeneration (M2). Regeneration of an injured nerve first requires phagocytosis of myelin debris by macrophages in the nerve4,5, and anti-inflammatory (CD68+CD206+) M2 macrophages have been shown to promote axon outgrowth in the PNS6. Reduced recruitment or macrophages to the PNS, or impaired capacity for phagocytosis may result in impaired regeneration and maintenance of nerve integrity. Inflammatory M1 macrophages, expressing MHC class II, are less capable of phagocytosis than M2 macrophages, and neuronal inflammation is implicated in the pathogenesis of several neurodegenerative diseases7.
The changes that occur to the nerve resident immune system as a consequence of damage may be quantitative, manifesting in loss of CD45+ leukocytes (or increased infiltration of CD45+ leukocytes in the case inflammation), or qualitative, such as change of macrophage phenotype from M2 to M1 phenotype. The immune cells of the PNS have traditionally been analyzed by means of IF, using frozen sections or paraffin-embedded material8. IF is required for determining localization of the cells of interest. However, quantification using IF often relies on counting a relatively small number of cells in a narrow section of the tissue, making quantification unreliable and vulnerable to selection bias. For identification of specific subsets of immune cells, the simultaneous detection of extracellular and/or intracellular markers is required, whilst determination of the macrophage phenotype requires at least at least two markers, specifically CD206 and MHC class II. As most commonly available microscopes are limited to at least two-color channels, such as fluorescein isothiocyanate (FITC) and phycoerythrin (PE), the characterization of the specific subsets of immune cells by IF can be restrictive and incomplete, requiring the need to have multiple slides, derived from the same area of interest, which are stained and analyzed in parallel. This time-consuming aspect therefore does not necessary lend itself to the analysis of large sample sets. Furthermore, as most of the markers of interest are extracellular, the detection in tissue, which has either been embedded in paraffin or cryoconserved, can be problematic due to the disruption of membrane integrity and the masking of epitopes, as well as the loss of the antigens of interest from the use of solvents, such as acetone and methanol9.
In contrast, flow cytometry, which measures optical and fluorescence characteristics of single cells in suspension as they pass through a beam of light, provides a more practical and comprehensive means for analysis of the cell populations. Flow cytometry, rather than producing a digital image of the tissue, provides an automated quantification of set parameters, which include a cell's relative size and reflective index, referred to as the forward scatter (FSC), granularity/internal complexity or side-scatter (SSC), and relative fluorescence intensity, providing that the cell has been labeled with an appropriate fluorophore, such as a conjugated antibody. A typical flow cytometer consists of two, air-cooled lasers; an argon laser produces blue light at 488 nm and a helium-neon laser produces light at 633 nm. This combination allows for the detection and measurement, simultaneously, of at least five targets either on the surface or within the intracellular compartment. More advanced flow cytometers can consist of multiple lasers, which allow for the detection of up to eight different fluorochromes at once, providing that the peak emission wavelengths of the selected fluorochromes do not overlap significantly.
For analyzing by flow cytometry, the tissue of interest must first be enzymatically digested, generally with collagenase, to generate a single-cell suspension. The analysis of murine sciatic nerves has previously been difficult due to the small amount of tissue obtained from each mouse. In addition, the high fat content of the myelin around the axons hampers cell recovery and produces large amounts of debris. The method described herein for sciatic nerve preparation and digestion was adapted from the Schwann cell isolation protocol of Barrette et al.7, and aims to isolate enough cells from nerves of individual mice for flow cytometry analysis, in order to reduce variation between mice. Using DAPI for the identification of single cells in the raw tissue digest circumvents the need to remove axon debris, which commonly leads to cell loss. Washing several times with a detergent-rich buffer aids in the release of cells trapped within the fatty debris, thereby increasing the yield. Digestion of both full-length sciatic nerves from a single mouse according to this protocol generates ≥30,000 single nucleated events and at least 3 times that number was retrieved from the DRG. The proportion of CD45+ leukocytes was approximately 5% of total cell content in the sciatic nerve digest and approximately 5-10% in the DRG digest. The majority of the CD45+ cells in the sciatic nerve expressed the macrophage markers, CD68 and CD206.
Wild-type C57BL/6 mice (Males; 10-12 weeks) were kept in standard 12 h light/dark cycle and were provided free access to standard chow diet and water. All animal experiments were conducted in accordance to the relevant guidelines by the local Animal Care and Use Committee and approved by the local Animal Care and Use Committee at the regional authority in Karlsruhe, Germany (G216/10).
1. Perfusion of the Mouse
2. Dissection of Sciatic Nerve and DRG
NOTE: For the dissection of the sciatic nerves, the skin above the gluteus maximus is removed and the mouse is positioned ventral side down whilst stretching out the lower limbs.
3. Digestion of Sciatic Nerve and DRG
4. Staining of Sciatic Nerve and DRG with Fluorescently Labeled Antibodies for Flow Cytometry
5. Setup of Flow Cytometry and Running of Samples
Cell suspensions from both full-length sciatic nerves and all major DRG were prepared, according to the protocol, from six healthy C57BL/6 mice and divided into three equal aliquots for staining. Counter staining with DAPI, which stains DNA, allows for the detection of a single cell population (Figure 1A–B, upper panel). Washing out the DAPI, prior to analysis by flow cytometry, decreased to an extent the fluorescent intensity of the non-nucleated debris, which allows for the selection of a discrete population over the FSC-axis of single-nucleated events or singlets. No collection gate is applied as the singlets from PNS are distributed over a large range of FSC and SSC (Figure 1C). The material on the high end of the FSC axis, which contains incompletely digested tissue, must be excluded in the selection of the singlet population (Figure 1A–B). Using a density plot (lower panel) to display the results may facilitate in the exclusion of the large debris (lower panel). A total of ≥ 30,000 singlets can be regularly obtained from two full sciatic nerves and ≥200,000 singlets can be obtained from DRGs (Figure 1D). From the sciatic nerves, approximately 5% of singlets expressed CD45 on their surface, whereas approximately 5-10% were found in the DRGs, thereby defining these cells as leukocytes of hematopoietic origin (Figure 2A).
A majority of the CD45+ singlets also expressed MHC class II, in a gradual manner (Figure 2B). In the DRGs, CD11b can be used to detect microglial-like cells (CD45dim, MHCII+ and CD11b+) (Figure 2B, upper panel). However, this microglia population is absent from the sciatic nerves (Figure 2B, lower panel). A majority of the singlets expressing CD45 in the PNS are CD68+ macrophages. In the sciatic nerve and DRG, 2-5% of the singlets expressed CD68 (Figure 3A). All cells expressing CD68 also expressed CD45 (data not shown). In the DRGs, the CD68+ macrophages were more heterogeneous in their expression of both MHC class II and CD206, a marker for M2 macrophages, than in the sciatic nerves (Figure 3B–D). In the sciatic nerves, most macrophages co-expressed MHC class II and CD206 (Figure 3B–D, lower panels); typically, approximately 60-80% of the CD68+ macrophages expressed CD206, while a smaller proportion of the CD68+ co-expressed CD206 in the DRGs (Figure 3B). Interestingly, the M1 macrophage marker CD86 did not generate any positive staining neither on macrophages from nerve nor from PCL (data not shown). The macrophage marker, F4/80, showed a heterogeneous expression both in DRG and in sciatic nerves (Figure 3B–C), staining a proportion of the CD68– and MHCII– cells. Furthermore, F4/80 expression did not fully overlap with the CD68 expression.
Figure 1: Representative data from flow cytometry analysis of DAPI-stained nucleated cells from DRG and sciatic nerve. All events collected, shown as scatterplots (upper panel) or density plots (lower panel), from (A) DRG or (B) sciatic nerve (SN) of one representative mouse. Arrows in the lower panels indicate the gates, excluding the material at the top the FCS axis. (C) Back-gating of the cells collected in the DAPI-gate (singlets), shown in panel (A) on SSC vs. FSC scatter plot. (D) Number of singlets from both SN and all major DRG from six healthy C57BL/6 mice. Data represent mean ± SD. Please click here to view a larger version of this figure.
Figure 2: Flow cytometry analysis of surface expression of CD45, MHC class II, and CD11b on singlets from DRG and sciatic nerve. Events selected in the DAPI-gate (singlets) shown in Figure 1 were analyzed. (A) Proportion of the singlets expressing CD45 in the sciatic nerve (SN) and DRG from six control mice. (B) Representative scatter plots of singlets from DRG (upper panel) and SN (lower panel). Cells expressing CD11b are indicated with blue color. Data represent mean ± SD. Please click here to view a larger version of this figure.
Figure 3: Flow cytometry analysis of surface expression of CD68, MHC class II, and CD206 on singlets from DRG and sciatic nerve. Events selected in the DAPI-gate (singlets) shown in Figure 1 were analyzed. (A) Proportion of the singlets expressing CD68 in sciatic nerve (SN) and DRGs from six healthy C57BL/6 mice. (B) Proportion of CD68+ macrophages co-expressing CD206 in SN and DRG from six healthy C57BL/6 mice. (C) Representative scatter plots of singlets from DRG (upper panel) and SN (lower panel) showing CD68 and MHC class II expression. (D) Representative scatter plots of singlets from DRG (upper panel) and SN (lower panel) showing CD68 and CD206 expression. Cells expressing F4/80 are indicated with magenta color. Data represent mean ± SD. Please click here to view a larger version of this figure.
Sciatic nerves contain a large proportion of lipids, such as cholesterol, due to the content of myelin around the axons. Since the properties of lipids change with temperature, different results may be obtained at different temperatures. To ensure cell preservation, all steps in this protocol after the digestion were performed on ice. Whilst consistency is recommended for the sake of reproducibility of the results, it may be possible to increase yield by performing the steps 3.6 and 3.7 at room temperature. If the nerves at step 3.8 have not been sufficiently digested, small pieces of nerve will be visible on the mesh. In case of insufficient digestion, the material retained on the mesh can be re-digested by transferring to a new 1.5 mL tube containing 250 µL of digestion media and repeating steps 3.2-3.6. If the yield is poor, then a sample of the cell suspension, after passing through the mesh screen (step 3.6) should be viewed under a light microscope with trypan blue. Viable, non-blue, cells should be visible along with rod-like structures, which are fragments of axons. If no viable cells are present, then the digestion conditions and/or incorrect handing of the material has caused necrosis. If only large aggregates are visible, then it is recommended to collect the material by centrifugation and repeat the digestion (steps 3.2-3.6).
The method of flow cytometer analysis of murine sciatic nerves and DRGs is useful for questions involving whole nerves and several DRGs. Recently there has been an increased interest in the analysis of the PNS using flow cytometry11,12. Liu et al. have developed a method using papain and mechanical dissociation of the sciatic nerves and DRGs using 21G and 23G to specifically analyze as little as 1 cm section of the nerve, thereby allowing for the analysis of nerve material from specific sites of injury11. The method presented here is recommended for use when the effect on the PNS is expected to be systemic, as in neurotoxicology and genetic models of neuropathy or in chronic diseases, such as diabetes. Due to the low yield of nucleated cells obtained from sciatic nerve, it is not recommended to attempt to study small populations with ≤ 100 gated events from an individual mouse. However, pooling of material from several mice would facilitate the study of such small populations within the nerve. Nevertheless, it would be of interest to investigate whether the enzymatic tissue dissociation using papain and 21G/23G needles described by Liu et al.11 could be combined with the flow cytometry staining of nuclei, as described in this study, to enhance the yield of single cells. The ability to analyze very small amounts of tissue is crucial for performing comparison between ipsi- and contralateral DRGs following unilateral sciatic nerve axotomy. However, this is beyond the scope of this study. Interestingly, commonly used markers for identification of macrophages were found to have an unexpectedly heterogeneous expression in the PNS of mice. For instance, CD11b and F4/80 were both found to be expressed on a large proportion of non-hematopoietic, non-antigen presenting cells in both sciatic nerve and DRGs. Furthermore, in the sciatic nerves, not all CD68+ macrophages expressed CD11b and F4/80, as would have been expected from the study of other organs. It is therefore recommended that caution is taken when using these markers for the study of macrophages in the PNS and that other markers, such as CD163, should be investigated. Furthermore, the sensitivity of the different markers to the enzymatic dissociation should also be established as this maybe an explanation for the differences observed in expression, such as with CD11b or F4/80.
This protocol has previously been used to analyze the immune cells in the PNS after toxic challenge with streptozotocin (STZ)13, a chemical commonly used for the induction of diabetes in model rodent organisms. It was shown that STZ, which activates both TRPV1 and TRPA1, initially causes a depletion of immune cells in both sciatic nerve and DRGs, while not causing any inflammation in the nerve. Although the numbers of immune cells in the DRGs recovered, the immune cells and notably macrophages were still significantly depleted three weeks post toxic challenge. It was subsequently hypothesized that macrophage phagocytosis of nerve debris, resulting from injury by ion channel hyperexcitability may have led to the apoptosis of the macrophages, resulting in their depletion from the general cell population. It is not known how other peripheral nerve toxins affect nerve resident macrophages. If depletion of macrophages is a common result of such agents this may have implications for treatment.
It was found that only 5-10% of the nucleated cells from the nerve were leukocytes of hematopoietic origin. The remaining cells are presumably a mixture of the other nerve cell types, namely Schwann cells, pericytes, fibroblasts, and endothelial cells. Due to capacity of flow cytometry systems to measure multiple parameters and providing that there are specific markers and/or antibodies available, it conceivable that these cell types could also be analyzed using this method. This method has been described for murine material. However, with some modifications, it has also been used for the analysis of PNS material from pig and from human. It is anticipated that this method will be more useful for the analysis of material from species larger than mice, in the future.
The authors have nothing to disclose.
This study was supported by the Deutsche Forschungsgemeinschaft (DFG; SFB1118). The authors would like to thank Axel Erhardt for performing most of the dissection and helpfully transmitting this knowledge, and Dr. Volker Eckstein for assisting in the technical aspect of the flow cytometer.
C57BL/6 Mouse | Charles River | C57BL/6NCrl | |
DMEM (+1g/L glucose, Glutamine, Pyruvate) | Thermo | 31885023 | The source of this material is not important |
HEPES | Sigma-Aldrich | H3375 | |
Bovine serum albumin (BSA) | Sigma-Aldrich | A2153 | |
Collagenase Type 4 | Worthington Biochemical Corp., US | LS004188 | |
Deoxyribonuclease (DNase) I from bovine pancreas I | Sigma-Aldrich | DN25-1g | |
Ethylenediaminetetraacetic acid (EDTA) | Sigma-Aldrich | E6758 | |
Foetal Calf Serum (FCS), heat inactivated | Sigma-Aldrich | F4135 | |
Antibody against CD11b-PerCP/Cy5.5 | Biolegend | 101228 | Clone M1/70 |
Antibody against MHC class II, biotinylated | Biolegend | 107603 | Clone M5/114.15.2 |
Antibody against CD45-A647 | Biolegend | 107603 | Clone 30-F11 |
Antibody against CD68-APC | Biolegend | 137007 | Clone FA/11 |
Antibody against CD206-PE | Biolegend | 141706 | Clone C068C2 |
Antibody against F4/80-PE/Cy7 | Biolegend | 123113 | Clone BM8 |
Streptavidin-PE/Cy7 | Biolegend | 405206 | Used to detect MHCII-biotin with CD45-A647 and CDllb-PerCP/Cy5.5 |
Streptavidin-PerCP | Biolegend | 405213 | Used to detect MHCII-biotin with CD68-APC and F4/80-PE/Cy7 |
Triton-X 100 | Sigma-Aldrich | T8787 | |
DAPI | Sigma-Aldrich | D9542-1MG | Dilute in PBS to a 50x and store at 4 °C in the dark |
Cell dissociation sieve – tissue grinder kit | Sigma-Aldrich | CD1 | |
V-Shaped, 96-well plates | Greiner/Sigma | M8185 | |
5ml polystryene round-bottom tube, 12x75mm | BD Biosciences | 352008 | |
60x15mm petri dish | Greiner/Sigma | Z643084 | |
BD LSR II Flow Cytometer | BD Biosciences |