Synaptic currents can be recorded focally from visualized synaptic boutons at the Drosophila third instar larvae neuromuscular junction. This technique enables monitoring the activity of a single synaptic bouton.
Drosophila neuromuscular junction (NMJ) is an excellent model system to study glutamatergic synaptic transmission. We describe the technique of focal macropatch recordings of synaptic currents from visualized boutons at the Drosophila larval NMJ. This technique requires customized fabrication of recording micropipettes, as well as a compound microscope equipped with a high magnification, long-distance water immersion objective, differential interference contrast (DIC) optics, and a fluorescent attachment. The recording electrode is positioned on the top of a selected synaptic bouton visualized with DIC optics, epi-fluorescence, or both. The advantage of this technique is that it allows monitoring the synaptic activity of a limited number of sites of release. The recording electrode has a diameter of several microns, and the release sites positioned outside of the electrode rim do not significantly affect the recorded currents. The recorded synaptic currents have fast kinetics and can be readily resolved. These advantages are especially important for the studies of mutant fly lines with enhanced spontaneous or asynchronous synaptic activity.
Drosophila is an excellent model system to study the molecular mechanisms controlling synaptic transmission. The neuromuscular system in Drosophila is glutamatergic, and therefore the Drosophila neuromuscular junction (NMJ) can be used to study the conserved features of glutamatergic release. Since Jan and Jan's study1, the third instar larvae has been broadly used to study evoked and spontaneous synaptic transmission by monitoring excitatory junction potentials (EJPs) or currents (EJCs). EJPs are commonly recorded intracellularly with a sharp glass micro-electrode, and they reflect the activity of the entire NMJ, including all the boutons making synapses at the given muscle fiber.
In contrast, the activity of a limited number of the sites of release can be recorded focally by positioning a micropipette tip near neuronal terminals or synaptic varicosities. This technique was originally employed by Katz and Miledi2, and focal extracellular recordings have been successfully employed at several NMJ preparations, including frog3,4,5, mouse6,7,8, crustacean9,10,11,12,13,14,15,16, and Drosophila17,18,19,20,21,22,23. This approach was further developed by Dudel, who optimized macropatch recoding electrodes24,25. In Dudel's implementation, this technique closely matched the loose-patch-clamp method26.
The Drosophila larval NMJ has clearly defined synaptic boutons, and transgenic lines with genetically encoded neuronal fluorescent tags (see Table of Materials) are readily available. These advantages enabled us to record EJCs and mEJCs from a selected synaptic bouton20,21,22. Here, we describe this technique in detail.
1. Fabrication of Recording Electrodes
Figure 1. Final steps of micropipette fabrication. (A) Electrode tips after pulling and fire polishing. (B.1) The setup for tip bending. (B.2) The boxed area is shown enlarged on the right. The electrode and the filament are fixed so that the electrode tip is positioned slightly above the wire and not touching. (C.1) The recording electrode. (C.2) The boxed area is shown enlarged on the right. The first bend has an angle of approximately 90°, and the distance between the first bend and the tip of the electrode is approximately 1 mm. Scale bar = 3 mm. Please click here to view a larger version of this figure.
2. Additional Preparatory Steps
3. Electrical recordings of EJCs
Figure 2. The recording setup. The sample NMJ pinned to the silicon coated petri dish (arrow) is positioned over the movable stage of the upright compound microscope equipped with epifluorescence capabilities, a high magnification objective, and two micromanipulators. The microscope is stationed on an anti-vibration table. Please click here to view a larger version of this figure.
Figure 3. Visualization of synaptic boutons. (A) A brightfield image of a hemi-segment under 10x magnification (A.1) and the enlarged boxed area showing muscles 6 and 7 (A.2, the arrow marks the recording electrode). Scale bar = 50 µm. (B) Synaptic boutons are visualized in a Drosophila line with a genetically encoded neuronal marker (CD8-GFP) using epi-fluorescence imaging (B.1) or DIC optics (B.2). Images are taken with the 60x objective and the filter cube for GFP imaging (see Table of Materials). Synaptic boutons are marked with arrows, and an overlay of fluorescent and DIC images is shown in B.3. Scale bar = 10 µm. Please click here to view a larger version of this figure.
4. Analysis
Figure 4. Quantal analysis. Detection of mEJCs (A) and EJCs (B) by Quantan software. The event area is marked in green, and peaks are marked by red arrowheads. Please click here to view a larger version of this figure.
Focal macropatch recordings enable monitoring synaptic activity from selected synaptic boutons (Figure 5). When the electrode is positioned on the top of a synaptic bouton (Figure 5A, site 1), the recorded mEJCs (Figure 5C, site 1) have a amplitudes significantly exceeding the noise level and sharp rising phases (at a sub-millisecond range). When the recording electrode is moved away from the synaptic bouton by several microns (Figure 5A, site 2), the amplitudes of recorded mEJCs decline almost to the noise level (Figure 5B, site 2). The recorded EJCs can barely be distinguished from the noise and they have prolonged rising phases (Figure 5C, site 2 versus site 1).
The limited number of release sites contributing to recorded EJCs and mEJCs, as well as rapid kinetics of synaptic currents recorded focally, enables accurate detection of release events in mutants with elevated synaptic activity. This can be clearly illustrated by recordings of mEJCs from complexin null mutant (Figure 6A). Spontaneous activity is drastically elevated in this mutant32, and therefore mEJPs recorded intracellularly overlap and cannot be clearly distinguished from each other (Figure 6B), while focal recordings22 enable accurate detection of spontaneous release events (Figure 4A).
Figure 5. Recordings of EJCs and mEJCs from a selected bouton. (A) Placing the electrode over a selected bouton (site 1) and moving it away from the bouton (site 2). The images show the CD8-GFP tagged NMJ visualized with epi-fluorescence (A.1), recording electrode over the muscle fiber (A.2), and overlays (A.3, A.4), with the electrode positioned over site 1 (A.3) or site 2 (A.4). Scale bar = 10 µm. (B) mEJCs recorded from the bouton (site 1) are clearly distinguished from the recording noise and have rapid rising phases. In contrast, mEJCs recorded from site 2 cannot be reliably distinguished from the recording noise, their amplitudes are reduced several-fold, and they have a slower time-course. (C) The Amplitudes of EJCs recorded from the bouton (site 1) exceed by many-fold the amplitudes of EJCs recorded from site 2, and they also have more rapid kinetics. Please click here to view a larger version of this figure.
Figure 6. Focal macropatch versus intracellular recordings. Focal recordings enable accurate detection of mEJCs in the complexin null mutant (A), while intracellular recordings (B) from this mutant exhibit release events that overlap and cannot be reliably detected. Please click here to view a larger version of this figure.
Drosophila represents an advantageous model organism to study synaptic transmission. Several recording configurations have been used at the larval NMJ, including intracellular recordings of synaptic potentials, recordings of synaptic currents with two electrode voltage clamp33,34, and focal macropatch recordings of synaptic currents described here. The latter technique allows the precise quantification of synaptic transmission at visualized boutons.
The success of the described protocol critically depends on the ability to clearly visualize the area of interest and to customize the preparation of recording electrodes. Thus, quality DIC optics, a high magnification water immersion objective with a long working distance, and customized equipment for fire polishing and bending of recording electrodes are critically important.
The advantage of this approach is that it allows monitoring the activity of a few synapses that are positioned under the recording electrode. It should be noted, however, boutons positioned near the rim of the electrode may also contribute to recorded activity. It is critical, therefore, that the position of the electrode, as well as the seal resistance, does not change in the course of the experiment.
The ability to monitor activity of a single bouton can be potentially combined with recent imaging technologies. For example, optical detection of activity at individual active zones35 can be combined with focal recordings of EJCs and mEJC, and this could couple the spatial resolution of optical detection with temporal resolution of electrical recordings.
The authors have nothing to disclose.
Supported by the NIH grant R01 MH 099557
Sutter P-97 | Sutter instrument | P-97 | Microelectrode puller |
Narishige MF-830 | Narishige | MF-830 | Microforge |
WPI MF200 | WPI | MF200 | Microforge |
Glass capilaries | WPI | B150-86-10 | Glass capilaries |
Microtorch 1WG61 | Grainer | 1WG61 | Microtorch |
Sylgard 184 Silicone Elastomer Kit | Dow Corning | SYLGARD 184 | Silicone for dissection plates preparation |
Dissection pins | Amazon | B00J5PMPJA | Pins for larvae positioning |
Tweezers | WPIINC | 500342 | Tweezers for placing pins, removing the guts and tracheas. |
Scissors | WPIINC | 501778 | Scissors for cutting the cuticula of the larvae and nerves. |
Olympus BX61WI | Olympus | BX61WI | Upright microscope |
Olympus Lumplan FL N 60x | Olympus | UPLFLN 60X | Microscope objective 60X |
Olympus UPlan FL N 10x | Olympus | Uplanfl N 10X | Microscope objective 10X |
Narishige Micromanipulator | Narishige | MHW-3 | Three-axis Water Hydraulic Micromanipulator |
npi Electronic GmbH ELC-03XS | npi Electronic GmbH | ELC-03XS | Electrophysiological amplifier |
A.M.P.I Master 8 | A.M.P.I. | Master 8 | Electrical stimulator |
A.M.P.I Iso-Flex | A.M.P.I. | Iso-Flex | Stimulus isolator |
TMC antivibration table | TMC | 63-9090 | Antivibration table |
TMC Faraday cage | TMC | 81-333-90 | Faraday cage |
Digidata 1322A | Axon Instruments | Digidata 1322A | Digidata |
Computer | Dell | Dell Dimension 5150 | Computer with Win XP OS |
Electrode holder | WPI | MEH3SW | Electrode holder |
Optical filter | Omega optical | XF 115-2 | Filter cube for Green Fluorescent Protein (GFP) detection |
pCLAMP 8 | Axon Instruments | 8.0.0.81 | Software for signal recording |
Quantan | In-house software | – | Software for signal processing |
Canton-S (Wildtype) | Bloomington Stock Center | 64349 | Control fly line |
cpx SH1 | Generous Gift of J.T. Littleton | – | Complexin knock-out fly line with increased spontaneous exocytosis |
CD8-GFP | Bloomington Stock Center | 5137 | Fly line with neuronal fluorescent (GFP) Tag |