Here, we present a protocol to develop and apply a mobile game-based virtual reality program for the recovery of upper limb dysfunction in patients with stroke. The present study shows that the mobile program is feasible and effectively promotes upper limb recovery in stroke patients.
Stroke rehabilitation requires repetitive, intensive, goal-oriented therapy. Virtual reality (VR) has the potential to satisfy these requirements. Game-based therapy can promote patients' engagement in rehabilitation therapy as a more interesting and a motivating tool. Mobile devices such as smartphones and tablet PCs can provide personalized home-based therapy with interactive communication between patients and clinicians. In this study, a mobile VR upper extremity rehabilitation program using game applications was developed. The findings from the study show that the mobile game-based VR program effectively promotes upper extremity recovery in patients with stroke. In addition, patients completed two weeks of treatment using the program without adverse effects and were generally satisfied with the program. This mobile game-based VR upper extremity rehabilitation program can substitute for some parts of the conventional therapy that are delivered one-on-one by an occupational therapist. This time-efficient, easy to implement, and clinically effective program would be a good candidate tool for tele-rehabilitation for upper extremity recovery in patients with stroke. Patients and therapists can collaborate remotely through these e-health rehabilitation programs while reducing economic and social costs.
Stroke is one of the most common causes of neurological impairment in adults. Recovery from impairment after a stroke is usually incomplete, and approximately 50% of patients are left with disabilities, making them dependent on others1. In particular, upper limb dysfunction makes stroke survivors dependent on others for assistance with activities of daily living (ADL)2. Regaining the lost function in the upper extremities may be more difficult to achieve than returning the normal function of ambulation to the lower extremities. Although bilateral lower extremity movement is indispensable for locomotion, patients can perform ADL with unilateral upper extremity movement. This leads to a learned non-use phenomenon of the affected limb3. This phenomenon is an obstacle to the rehabilitation of the upper extremity in stroke survivors. Therefore, a tremendous amount of research is focused on the upper limb function recovery. Studies have highlighted the importance of extensive practice and repetitive task-specific training4,5,6.
Virtual reality (VR) technology has recently been introduced into the field of rehabilitation7. VR allows users to interact with a simulated environment and receive continuous, immediate feedback related to performance. VR has the potential to apply basic concepts of neurorehabilitation in stroke patients, such as intensive, repetitive, and task-oriented training8. Specifically, non-immersive VR does not require high-level graphics performance or special hardware. Therefore, non-immersive VR is a good candidate for providing a low-cost, ubiquitous, and interesting treatment program. Previous studies used computers, monitors, and special devices, such as consoles, sensor gloves, joy-sticks, and commercial gaming systems for non-immersive VR9. Higher start-up costs and sufficient space were mandatory for using such systems. Recently, low-cost tools, such as commercial gaming devices, have been utilized to develop new rehabilitation systems10,11. However, the consoles with sensors in those devicesare not sufficiently small and lightweight for carrying. Nevertheless, to improve the popularity of non-immersive VR as a post-stroke upper extremity treatment method and to create a ubiquitous rehabilitation environment for stroke survivors, portable and inexpensive tools are needed.
Furthermore, game-based therapy can be a good option for stroke rehabilitation. Many patients complain that conventional occupational therapy (OT) for upper limb function recovery is boring and monotonous12,13. A more interesting and motivating tool for the therapy is, therefore, necessary to promote patients' engagement in rehabilitation training. Many studies that involve the use of commercial games have been conducted14,15,16. However, the games used do not target the desired movement of the upper extremity in patients with stroke, and they lack special consideration for the spasticity that may be present after a stroke.
This paper describes the development of a mobile game-based VR program and its use for patients who have experienced a stroke and suffer from upper limb dysfunction (Figure 1).
The study was approved by the Seoul National University Bundang Hospital Institutional Review Board, and all participants gave written informed consent before screening.
1. Game Contents Development
NOTE: The mobile game-based upper extremity virtual reality program for patients with stroke (MoU-Rehab) consists of mobile game applications.
2. Study Design
NOTE: A quasi-randomized, double-blind, controlled trial was conducted to evaluate the program's feasibility and effectiveness. Participants who (1) were diagnosed with ischemic stroke; (2) had the ability to follow a one-step command; (3) had the medical stability to participate in active rehabilitation, and (4) had upper extremity impairment, were included. Patients were excluded if they (1) had delirium, confusion, or other severe consciousness problems, (2) suffered from uncontrolled medical conditions, (3) were unable to follow commands because of severe cognitive impairment, (4) had a visual disturbance, and (5) had poor sitting balance. Participants were recruited at the university hospital.
3. Usage of Mobile Game-based VR Upper Extremity Rehabilitation Program
A total of 24 patients were enrolled and assigned to either the control or the experimental group (Table 1). A greater improvement in the FMA-UE, B-stage, and manual muscle testing was found after treatment with the mobile game-based VR upper extremity rehabilitation program than with conventional therapy (Figure 3). The effect was maintained until the one-month follow-up. This means MoU-Rehab was not inferior to the conventional therapy that is delivered one-on-one by an occupational therapist.
Patients in the experimental group completed the two-week treatment without adverse effects, and were generally satisfied with MoU-Rehab (Table 2), even though participants had various levels of IT (computer, tablet PC, and smartphone) familiarity (Figure 4). Patients in the experimental group responded positively about the display of the program (4.25 ± 0.62), the readability of the program (4.25 ± 0.62) and the convenience of program usage (4.08 ± 0.67) in 5-point Likert rating (0–5). In addition, they stated that they were willing to pay $22 ± 10 for the game applications. There was no relation between IT familiarity and the amount of improvement.
The MoU-Rehab is feasible and effective in promoting upper limb recovery after an ischemic stroke.
Figure 1: The Configuration of the mobile game-based upper extremity VR program. The system for the mobile game-based upper extremity VR program includes a mobile device (tablet PC) for display and a mobile device (smartphone) for obtaining information on the movement using built-in sensors. Please click here to view a larger version of this figure.
Figure 2: Game contents and applications of the mobile game-based upper extremity VR program. Each game application targets a specific movement of the hemiplegic arm. The level of difficulty is adjusted according to each patient's upper extremity function.The target movements in the target joints is represented by yellow lines and circles. Please click here to view a larger version of this figure.
Figure 3: Changes in the outcome measures at the end of the treatment and at the 1 month follow-up after treatment. (A) Changes in the Fugl-Meyer Assessment of the upper extremity. (B) Changes in the Brunnström stage (arm and hand). (C) Changes in muscle power measured by the manual muscle test (shoulder/ elbow/ wrist). Mo: month, pre: before treatment with mobile game-based upper extremity VR program, post: after the two-week treatment with the mobile game-based upper extremity VR program, F/U: follow-up. The error bars indicate standard deviations (SD). Please click here to view a larger version of this figure.
Figure 4: Results of the IT familiarity survey. Participants in the experimental group (n = 12) were asked about their IT familiarities such as their computer, tablet PC, or smartphone experience. Please click here to view a larger version of this figure.
Experimental group (n=12) | Control group (n=12) | p-value | |
Sex (M/F) | 7/5 | 6/6 | 0.5 a |
Age (years) | 61.0±15.2 (21-76) | 72.1±9.9 (53-88) | 0.046 b |
Affected limb (L/R) | 8/4 | 10/2 | 0.32 a |
FMA-UE (range) | 24.5±22.2 (4-63) | 21.5±20.6 (4-57) | 0.735 b |
Brunnstrom-stage (arm) | 2.7±1.5 (1-5) | 2.7±1.5 (1-5) | 1.00 b |
Brunnstrom-stage (hand) | 1.9±1.4 (1-5) | 2.1±1.4 (1-4) | 0.775 b |
MMT (shoulder) | 2.7±1.1 (1-4) | 2.2±1.2 (0-4) | 0.292 b |
MMT (elbow) | 1.9±1.4 (1-5) | 2.1±1.4 (1-4) | 0.775 b |
MMT (wrist) | 2.7±1.1 (1-4) | 2.2±1.2 (0-4) | 0.292 b |
Table 1: Baseline demographic and clinical characteristics of the patients. There were no statistically significant differences between the two groups except with regard to age. a χ2 test, b t-test. FMA-UE: Fugl-Meyer Assessment of the Upper Extremity, MMT: Manual Muscle Test, M: male; F: female, L: left, R: right. Data indicate mean ±SD (range).
Question | Experimental group (n = 12) | Control group (n = 12) |
The upper extremity rehabilitation program provided sufficient treatment for me. | 4.17 ± 0.72 | 4.00 ± 0.85 |
The upper extremity rehabilitation program provided on target services to you | 4.42 ± 0.52 | 3.92 ± 1.00 |
In general, I am satisfied with the upper extremity rehabilitation program . | 4.25 ± 0.75 | 3.92 ± 1.00 |
The upper extremity rehabilitation program helped me to better manage my health and medical needs. | 4.33 ± 0.65 | 4.00 ± 0.74 |
Table 2: Results of the user satisfaction survey for mobile game-based upper extremity VR program. User satisfaction in the experimental group was not inferior to that in the control group. Participants in the experimental group responded positively to all items.
Patients with stroke usually have disabilities related to motor impairments due to incomplete motor recovery. Such disabilities, lengthy travel time to a clinic, or socioeconomic difficulties can hinder patients' access to adequate rehabilitation therapy. A ubiquitous healthcare (u-Health) program can be a good option for removing those barriers. As a part of such a u-Health program, a mobile game-based VR rehabilitation program was developed for upper limb recovery after ischemic stroke in the present study. Our findings suggest that this program is feasible and more effective in promoting upper limb function recovery compared to conventional therapy. At the one-month follow-up evaluation, improvements were successfully maintained.
We speculate that the therapeutic effectiveness of MoU-Rehab was equal to or greater than that of conventional therapy, because of the game's effects, such as immediate feedback from the patients' movement, enjoyment, high motivation, and engagement. Participation games may facilitate motor learning19 while increasing interest in rehabilitation and promoting motivation. Moreover, auditory and visual feedback can facilitate patients' desire for interaction. These factors may increase the efficacy of rehabilitation therapy by achieving a high level of patient adherence to training and increasing engagement in therapy.
Most of the previous game-based studies used commercial off-the-shelf games14. However, these games were not specifically designed for patients with stroke. The game program developed in this study specifically targets patients with stroke. Various kinds of game applications were developed, from which applications that could be used for such patients were selected. We chose only game applications that could induce desired movements and avoided synergistic movements.
The mobile program was designed for use with a smartphone and tablet PC because smartphones and tablet PCs are increasingly used by the general population; thus, it is relatively easy to implement treatment programs using these handheld mobile devices at low cost. Considering the lightweight aspect and small size of these mobile devices, they are portable and easy to use, regardless of a person's location. Although the program was administered in the therapy room to ensure strict matching of the treatment time between the two groups, this program can also be used in home settings.
However, the study has a few limitations. The first limitation stems from the study's small sample size. Although attempts were made to allocate patients to the two groups randomly, patients were allocated by admission period to keep them unaware of their group allocation. Treatment time was strictly matched during the 2-week treatment period but was not possible during post-treatment and follow-up. The motor activity of the affected arms could not be monitored during the study period. Measuring the activity of the affected arms by accelerometers could indicate the influence of the program on the non-use phenomenon20,21. In the present study, no kinematic data were available. By obtaining kinematic data such as linear and angular displacements, velocity, and acceleration, information on the characteristics of the patients' movements could be used to optimize individualized rehabilitation therapies through bidirectional feedback between patients and clinicians.
The findings of the present study suggest that this mobile game-based VR upper extremity rehabilitation program can be a substitute for some parts of conventional therapy that are delivered one-on-one by an occupational therapist. The program would be a good candidate tool for tele-rehabilitation for upper extremity recovery in patients with stroke.
The authors have nothing to disclose.
This research was supported by grant no. 06-2013-105 from the SK Telecom Research Fund. This work was supported by the Soonchunhyang University Research Fund.
Galaxy Note 10.0 | Samsung | Galaxy Note 10.0 | Tablet PC |
Galaxy S2 | Samsung | Galaxy S2 | Smartphone |
Bluetooth | Bluetooth SIG | Bluetooth | short-distance wireless connection |
Java | Oracle | Java | programming language |