This protocol outlines a simple method for analyzing calcium signals in plants generated by feeding hemipteran insects, such as aphids. Arabidopsis thaliana transformed with the GFP calcium biosensor GCaMP3 allow for the real-time in vivo imaging of calcium dynamics with a high temporal and spatial resolution.
Calcium ions are predicted to be key signaling entities during biotic interactions, with calcium signaling forming an established part of the plant defense response to microbial elicitors and to wounding caused by chewing insects, eliciting systemic calcium signals in plants. However, the role of calcium in vivo during biotic stress is still unclear. This protocol describes the use of a genetically-encoded calcium sensor to detect calcium signals in plants during feeding by a hemipteran pest. Hemipterans such as aphids pierce a small number of cells with specialized, elongated sucking mouthparts, making them the ideal tool to study calcium dynamics when a plant is faced with a biotic stress, which is distinct from a wounding response. In addition, fluorescent biosensors are revolutionizing the measurement of signaling molecules in vivo in both animals and plants. Expressing a GFP-based calcium biosensor, GCaMP3, in the model plant Arabidopsis thaliana allows for the real-time imaging of plant calcium dynamics during insect feeding, with a high spatial and temporal resolution. A repeatable and robust assay has been developed using the fluorescence microscopy of detached GCaMP3 leaves, allowing for the continuous measurement of cytosolic calcium dynamics before, during, and after insect feeding. This reveals a highly-localized rapid calcium elevation around the aphid feeding site that occurs within a few minutes. The protocol can be adapted to other biotic stresses, such as additional insect species, while the use of Arabidopsis thaliana allows for the rapid generation of mutants to facilitate the molecular analysis of the phenomenon.
Calcium (Ca2+) is one of the most ubiquitous signaling elements in plants. A transient rise in cytosolic Ca2+ concentration ([Ca2+]cyt) is decoded by a complex network of downstream components and is involved in the response to both abiotic and biotic stresses1,2. A rise in [Ca2+]cyt is one of the first responses to microbial elicitors, forming a common part of the plant defense response3,4,5. Rises in [Ca2+]cyt have also been observed in response to wounding caused by chewing insects, such as lepidopterans6,7. However, the potential role of plant Ca2+ signals in response to live biotic threats that cause damage to only a few cells has not been explored. The green peach aphid Myzus persicae is a hemipteran insect that represents a significant threat to world agriculture8,9, and Ca2+ efflux from the extracellular space has been observed in leaves infested with M. persicae10.This protocol outlines a robust and repeatable method for measuring plant Ca2+ signals while M. persicae feed from leaves using a fluorescent Ca2+ biosensor, with both aphids and GCaMP3 offering novel tools with which to dissect the role of Ca2+ during biotic interactions.
Ca2+-selective microelectrodes were formerly used to measure [Ca2+] in plants11,12. More recently, bioluminescent and fluorescent approaches have become standardized. These biosensors bind Ca2+ and emit light, allowing for un-paralleled opportunities to study Ca2+ dynamics in both cells and whole tissues. Ca2+ biosensors can be injected as dyes or stably produced upon the introduction of the biosensor coding sequence into the genome of the organism via transformation (i.e., genetically encoded biosensors). The latter offers the major advantages of being easily expressed in live tissue and capable of subcellular localization13. The aequorin protein, isolated from Aequorea victoria (jellyfish) was the first genetically encoded Ca2+ biosensor deployed in plants14. As a bioluminescent protein, aequorin does not require excitation by external light, which avoids chromophore bleaching and autofluorescence15. Aequorin has been successfully used to measure [Ca2+] fluxes in response to various stimuli, including temperature16, pathogens17,18,19, salt stress20,21, and wounding7. However, it is disadvantaged by the relatively low signal intensity, making the detection of [Ca2+] fluxes in individual cells and from tissues with poor sensor expression difficult13.
The development of Ca2+ biosensors that can fluoresce has complemented aequorin by allowing for detailed subcellular and tissue-level analysis of Ca2+ dynamics. One of the most common fluorescent biosensors are the fluorescence resonance energy transfer (FRET)-based Cameleons. FRET Cameleons are composed of two proteins, typically CFP and YFP, which are brought into close contact by the conformational change induced by the binding of Ca2+ to a calmodulin domain in the CFP-YFP linker region. This contact allows the transfer of energy from CFP to YFP, and the resulting change in the fluorescence of these fluorophores allows for the accurate quantification of [Ca2+] through the calculation of the ratio of the fluorescence signals from the two fluorophores22. FRET Cameleons are superior to aequorin and non-ratiometric florescent dyes, as they are less affected by the expression level of the protein23 and often have a greater fluorescent yield, allowing for cellular and subcellular imaging23. For example, FRET Cameleons have been recently used to identify long-distance Ca2+ signals in plants and to resolve these to the cellular level24,25,26.
A recent breakthrough with fluorescent GFP-based Ca2+ biosensors has been the development of highly sensitive single-fluorophore (single-FP) biosensors. Single-FP biosensors consist of a single circularly permutated GFP linked to a calmodulin and M13 peptide, with Ca2+ binding to calmodulin, resulting in a water-mediated reaction between calmodulin and GFP so as to protonate GFP and increase fluorescent yield27,28,29. Single-FP sensors offer several advantages over FRET Cameleons, including simpler experimental design and a potentially higher temporal resolution of imaging30. Although single-FP sensors cannot quantify absolute [Ca2+] as simply as FRET sensors, they are superior for the analysis of the temporal and spatial dynamics of Ca2+ signals5,23. GCaMPs are one of the best-established single-FP sensors28 and have undergone several revisions to enhance their fluorescent yield, dynamic range, Ca2+ affinity, and signal-to-noise ratios31,32,33,34. The GCaMPs have been successfully used in animal systems, such as zebrafish motor neurons35 and fruit fly neuromuscular junctions34. Random mutagenesis of GCaMP3 has resulted in additional classes of single-FP sensors, including the ultrasensitive GCaMP636 and the GECOs29. The GECOs were recently used in Arabidopsis thaliana (henceforth referred to as Arabidopsis) to measure Ca2+ fluxes in response to ATP, chitin, and the bacterial elicitor flg22. This study also demonstrated that the R-GECO biosensor outperformed the FRET Cameleon YC3.6 in terms of maximal signal change and signal-to-noise ratio5.
Because of the ease of use, high fluorescent yield, and high temporal resolution that can be achieved with GCaMP biosensors, GCaMP3 was genetically encoded in Arabidopsis under the Cauliflower mosaic virus 35S promoter. The genetic tools available for Arabidopsis research allow for the detailed molecular analysis of the Ca2+ signals measured by GCaMP3. In addition, the GCaMP3 biosensor can be visualized under a fluorescence microscope rather than a costlier confocal system. This protocol allows for whole-tissue imaging, essential when conducting experiments with live biotic stresses. The experiment is designed such that detached leaves from 35S::GCaMP3 plants are floated in water, to prevent insect escape and to restrict feeding to a specific tissue. The method outlined in this paper therefore allows for the analysis of leaf Ca2+ dynamics during feeding by M. persicae, resulting in the characterization of a novel plant signaling response. This method can also be adapted to work with other biotic stresses, such as additional insect species and microbial pathogens, and with other plant tissues, such as roots.
1. Plant Preparation (Days 1 – 4)
2. Insect Rearing (Days 11 – 12)
3. Leaf Detachment (Day 19)
Figure 1: 35S::GCaMP3 Leaf Assay. The largest leaf from each 16 day-old 35S::GCaMP3 Arabidopsis seedling is detached and floated on 300 µL of distilled water in a 96-well plate. Photo taken the day after detachment. Please click here to view a larger version of this figure.
4. Fluorescence Microscopy (Days 20 – 22)
5. Data Collection
Figure 2: Analyzing GCaMP3 Fluorescence Under the Microscope. Left: untreated control leaf. Right: aphid-treated leaf. The aphid feeding site is indicated with an arrowhead. Scale bar = 1 mm. (A) Bright field image. Magnification: 7.8X, focus: -127.833 mm, exposure: 1 s. (B) GFP image showing the ROIs used for the quantitative analysis of fluorescence. Fs = feeding site, Sm = systemic midrib, Sl = systemic lateral tissue. Magnification: 7.8X, focus: -127.833 mm, exposure: 1 s. The GFP was excited using a 450 to 490 nm metal halide lamp, and fluorescent emission was captured between 500 and 550 nm. Please click here to view a larger version of this figure.
6. Data Analysis
7. Time-course Video Creation
Figure 3 and Figure 4 are representative results from an experiment comparing an aphid-treated leaf with an untreated control. A highly localized increase in GFP fluorescence can be seen around the feeding site within a few minutes in the majority of samples, whilst the Ca2+ dynamics in the untreated control leaf stay relatively stable (Figure 3A and 3B). It is also possible to observe secondary increases in GFP fluorescence after the initial peak in some experiments (Figure 3B). In up to 50% of treated leaves, the aphids do not settle and the samples should be discarded. Of the samples in which settling occurs, 27% of samples do not exhibit clear increases in GFP fluorescence around the feeding site (Figure 3C and Table 1); therefore, 25 – 30 replicate samples should be averaged for quantitative analysis. Visualization of the area and speed of the feeding site [Ca2+]cyt elevation should reveal a signal of around 110 µm travelling at 6 µm/s (Table 1). In addition, no [Ca2+]cyt elevations should be detected systemically within the leaf upon aphid treatment, either in the systemic midrib (Figure 4A) or the systemic lateral tissue regions (Figure 4B). A representative sample of [Ca2+]cyt dynamics over time is shown in Video 1. It is also possible to analyze aphid settling behavior by tracking the number and duration of individual settling events under the microscope. Representative results for these behaviors are shown in Table 1, showing that the aphids take around 10 min before settling, and when they do settle successfully, this lasts for 20 min on average. Therefore, the insects are settled in a single location for the entirety of the [Ca2+]cyt elevation.
Figure 3: GCaMP3 can be used to Detect Aphid-elicited Ca2+ Signals at the Feeding Site in Detached Leaves. Left: representative traces (n = 30) of normalized GFP fluorescence (ΔF/F) around the feeding site of a 35S::GCaMP3 leaf. The traces display 5 min before settling until 25 min post-settling. Control = equivalent location on an untreated 35S::GCaMP3 leaf. Right: representative stereomicroscope image of [Ca2+]cyt elevation seen around an aphid feeding site on a 35S::GCaMP3 leaf. The GFP fluorescence is color-coded according to the inset scale. The aphid id outlined in white and the feeding site indicated with an arrowhead. Magnification: 7.8X, focus: -127.833 mm, exposure: 1 s. The GFP was excited using a 450 to 490 nm metal halide lamp, and the fluorescent emission was captured between 500 and 550 nm. (A) An example of a large aphid-induced [Ca2+]cyt elevation. (B) An example of an average aphid-induced [Ca2+]cyt elevation. (C) An example of no aphid-induced [Ca2+]cyt elevation. Please click here to view a larger version of this figure.
Parameter | Average (± SEM) |
[Ca2+]cyt elevation | |
Percentage of samples displaying a [Ca2+]cyt elevation | 73% |
Speed of wave front a | 5.9 µm/s (± 0.6) |
Maximum area of spread | 110 µm2 (± 18) |
Aphid behaviour | |
Number of settles (>5 min) | 2 (± 0.1) |
Total number of settles (all durations) | 3.8 (± 0.4) |
Time settled for imaging b | 20 min (± 2) |
Time until first settle c | 11 min (± 1.4) |
Percentage of total time spent settled | 62% (± 3) |
Table 1: [Ca2+]cyt Elevation and Aphid Behavior Parameters during 35S::GCaMP3 Imaging. Parameters calculated from viable samples in which settling of >5 min occurred. (A) Speed of the visible signal from the point of initiation to the furthest point of spread. (B) Duration of the initial settling events used for the analysis of fluorescence. (C) Length of time between the beginning of imaging and the first aphid settle. [Ca2+]cyt elevation data previously submitted to The Plant Cell (current status: initial QC).
Figure 4: GCaMP3 Cannot Detect Aphid-elicited Ca2+ Signals Systemic to the Feeding Site. Representative traces (n = 30) of normalized GFP fluorescence (ΔF/F) in locations systemic to the aphid feeding site in 35S::GCaMP3 leaves. The traces display 5 min before settling until 25 min post-settling. Control = equivalent location on an untreated 35S::GCaMP3 leaf. (A) ΔF/F in the systemic midrib region. (B) ΔF/F in the systemic lateral tissue region. Please click here to view a larger version of this figure.
Video 1: GCaMP3 Florescence Over time as an Aphid Feeds. The GFP fluorescence is color-coded according to the inset scale. The location of the aphid feeding site is indicated with an arrowhead. Left: 35S::GCaMP3 leaf exposed to an M. persicae adult. Right: A 35S::GCaMP3 no-aphid control leaf. Please click here to view this video. (Right-click to download.)
The method described in this paper allows for the real-time analysis of plant Ca2+ signaling during a biotic stress such as insect feeding. It demonstrates that one of the first plant responses to such threats is a localized [Ca2+]cyt elevation around the feeding site of the insect. Through the use of mutants, this method will allow for the the molecular and physiological characterization of such signals, which was not previously possible. A critical step in this protocol is to ensure that the detached leaves are not excessively disturbed during the detachment process (step 3.2) or when transferring insects to the leaves (step 4.5). Given that the current protocol provides a relative measurement of [Ca2+]cyt rather than an absolute concentration, it is vital that the microscope settings are kept constant throughout the experiment. There is also the potential for human bias during the selection of ROIs and the analysis of the data, and as such, it is recommended that the experiments are conducted double-blind.
There are several significant advantages of measuring [Ca2+]cyt during biotic stress with this protocol. First, the use of a single fluorophore with a high fluorescent yield allows the imaging to be conducted on a stereomicroscope, which is less costly than using a confocal microscope. The use of a single fluorophore also makes data collection and analysis simple, as there is just one measurement to record. In addition, the use of a stereomicroscope allows for the imaging of entire leaves, which is essential given that many biotic interactions, including plant-aphid interactions, occur on a large spatial scale. The high temporal resolution of image capture possible with GCaMP3, based on the rapid disassociation of Ca2+ from the sensor after binding23,30 and the high florescent yield, allows for measurements to be taken up to every 5 s. Furthermore, the leaf assay prevents the escape of the insect, a key limiting step to conducting such experiments on whole plants (in preparation). The detached leaves also ensure that the insect feeds from a pre-defined location, allowing for the analysis of Ca2+ dynamics before, during, and after feeding. This protocol also ensures that leaves of similar developmental stages are used for analysis.
The main disadvantage of this protocol originates from the use of a non-ratiometric biosensor. With single-FP biosensors, variation in GFP emission may result from experimental variables other than [Ca2+]cyt, such as changes in cellular pH, motion, or the expression level of the biosensor. These issues are not encountered with FRET Cameleons during FRET, as the transfer of energy from CFP to YFP only occurs upon Ca2+ binding. Other conditions that alter the fluorescent properties of the individual fluorophores are unlikely to mimic the opposing changes in intensity of CFP and YFP, and the ratiometric calculation that is used inherently normalizes the measurements for many of these other optical artifacts23,30. This makes estimations of absolute [Ca2+]cyt more reliable with FRET Cameleons. Consequently, GCaMP3 is best used as a biosensor to measure relative [Ca2+]cyt, although it is still sufficient to detect and characterize biological phenomena in plants5,(in preparation). Therefore, it is essential to use controls to show that the observed effect is due to Ca2+, including Ca2+-related genetic mutants(in preparation) or pharmacological Ca2+ channel inhibitors such as La3+. Importantly, single-FP biosensors typically display a greater fluorescent yield and greater dynamic range (i.e., an increase in florescence upon Ca2+ binding) than FRET Cameleons23, which makes GCaMP more suited to tissue-level imaging, while FRET Cameleons are a useful tool for cellular imaging with a confocal microscope5,25.
During the execution of this protocol, it is possible that some issues will arise that require troubleshooting. For example, it is recommended that samples in which the control (untreated) leaf displays large [Ca2+]cyt elevations are discarded (step 6.3). Such transients are most likely the result of stress induced by the microscopy. Indeed, blue light is known to elicit Ca2+ signals38,39,40,41, and the high-intensity light might also result in temperature and osmotic stresses, both of which also elicit [Ca2+]cyt elevations21,25,42. Consequently, to reduce such stresses, it is important to conduct the experiment in a well-ventilated and temperature-controlled room and to avoid unnecessarily long exposure times. It is also important to not disrupt the leaves excessively during detachment or during the microscopy to prevent touch-elicited [Ca2+]cyt elevations43,44,45. Issues may also be encountered with insect settling. With M. persicae, the insects do not settle on the leaves in several samples. This could be a result of wound-elicited defense in the detached leaves46,47, or the disturbance of the insects by the blue light. Indeed, vision in M. persicae is governed by three photoreceptors, including one with a peak sensitivity of 490 nm48. Reducing the microscopy exposure and handling the aphids with care might reduce distress and encourage settling.
The protocol outlined in the current paper gives new insights onto the molecular understanding of plant-insect interactions and the plant response to biotic stress. It allows for the visualization of one of the first plant responses to insect feeding and facilitates further investigations through the use of the considerable Arabidopsis genetic resources available. In addition, this protocol allows for the use of live organisms, as opposed to extracts49 or elicitors50. In the future, this technique could be applied to other biotic stresses, such as additional insect species, nematodes, or microbial pathogens, as well as to abiotic stresses. The GCaMP3 microscopy can also be modified to image other plant tissues, alternative ROIs on the leaf, or even whole plants. Furthermore, there is the potential for the biosensor to be genetically encoded in additional plant species. Consequently, the protocol outlined in this paper has the potential to undercover the molecular basis of Ca2+ signaling in a range of novel biotic interactions between plants and other species.
The authors have nothing to disclose.
We would like to thank Grant Calder (John Innes Centre, U.K.) for the advice concerning microscopy. The authors also wish to thank the John Innes Centre horticultural and entomology departments for their assistance. This work was supported by a PhD studentship from the John Innes Foundation (T.V.), grant B/JJ004561/1 from the BBSRC and the John Innes Foundation (T.V., M.A., J.C., S.M., S.H., T.M., and D.S.), a year in industry placement from the John Innes Centre (M.A.), a summer studentship from the Biochemical Society of the UK (J.C.), JST PRESTO (M.T.), and grants MCB 1329723 and IOS-1557899 from the National Science Foundation (M.T. and S.G.).
35S::GCaMP3 Arabidopsis | John Innes Centre/Universty of Wisconsin | – | Step 1.1 |
100 mm2 square plastic plates | R & L Slaughter Ltd, Upminster, UK | For growing GCaMP plants (Step 1.1) | |
¼ strength Murashige and Skoog (MS) medium | homemade: 1.1 g Murashige and Skoog medium, 7.5 g sucrose, 10 g Formedium agar, 1 L de-ionised water | – | For growing GCaMP plants (Step 1.1) |
Col-0 Arabidopsis | – | – | For growing aged aphid colony (Step 2.1) |
Myzus persicae(Sulzer) | clone US1L, Mark Stevens, Brooms Barn | – | Orginally from Rothamsted Research, UK (Step 2.1) |
Artist's paintbrush size 2 | Hobbycraft | 610101 | To tranfer aphids (Steps 2.1, 2.4 and 4.6) |
96-well MicrotitreTM plate | ThermoFisher Scientific | 2101 | To contain the detached GCaMP3 leaves (Step 3.2) |
Aluminium foil | Wrap Film Systems, Telford, UK | 26B06 | To cover plates with floating leaves overnight (Step 3.3) |
Clear plastic wrap | SC Johnson & Son, Racine, WI, USA | To cover plates with floating leaves overnight, and to cover leaves during microscopy (Steps 3.3 and 4.7) | |
M205FA stereo microscope | Leica Microsystems | – | For GFP imaging (Step 4.1) |
Leica Application Suite v3.2.0 | Leica Microsystems | Microscope software (Step 4.1) | |
Fiji (Image J) v1.48a | National Institutes of Health, USA) | – | For image analysis (Step 6.1) |