A capillary-based immunoassay using a commercial platform to measure target proteins from total protein preparations is demonstrated. In addition, assay parameters of exposure time, protein concentration, and antibody dilution are optimized for a cell culture model system.
New technologies that utilize capillary-based immunoassays promise faster and more quantitative protein assessment compared to traditional immunoassays. However, similar to other antibody-based protein assays, optimization of capillary-based immunoassay parameters, such as protein concentration, antibody dilution, and exposure time is an important prerequisite to the generation of meaningful and reliable data. Measurements must fall within the linear range of the assay where changes in signal are directly proportional to changes in lysate concentration. The process of choosing appropriate lysate concentrations, antibody dilutions, and exposure times in the human bronchial epithelial cell line, BEAS-2B, is demonstrated here. Assay linearity is shown over a range of whole cell extract protein concentrations with p53 and α-tubulin antibodies. An example of signal burnout is seen at the highest concentrations with long exposure times, and an α-tubulin antibody dilution curve is shown demonstrating saturation. In addition, example experimental results are reported for doxorubicin-treated cells using optimized parameters.
Capillary electrophoretic immunoassays measure protein expression in cell lysates using size or charge separation systems and provide several advantages over the traditional immunoassays. For example, when compared to western blot, the automated capillary-based procedure eliminates the need for gels, transfer devices, and manual washes. In addition, the absolute amount of protein required is approximately 10 times less, making capillary-based systems ideal for use with rare cell types or limited sample1,2. Results are obtained in as little as 3 h using automated systems and have previously been demonstrated to be more quantitative and reproducible than conventional western blot procedures3,4,5. The process for size-based assays consists of loading samples containing sodium dodecyl sulfate (SDS), dithiothreitol (DTT), and fluorescently labeled molecular weight markers into capillary columns containing stacking and separation matrices. Voltage applied to the capillaries separates the proteins in the samples according to size, and UV light immobilizes the separated proteins to the capillary wall. The capillary is then immuno-probed with target-specific primary antibody and horseradish peroxidase (HRP)-conjugated secondary antibody. Luminol and peroxide catalyze chemiluminescent light generation which is measured by a charge coupled device (CCD) camera and analyzed to quantitate protein.
Despite the relative ease and speed of an automated capillary-based electrophoretic immunoassay platform, optimization of assay conditions such as protein concentration, antibody dilution, and exposure time is important for obtaining accurate, reproducible results. In general, the following procedures should be performed to optimize an assay for these systems:
1) A screen should be performed to evaluate and choose antibodies for signal and specificity to the protein target. If available, purified protein or target epitope can be used to assess specificity; however, it is still important to assess potential non-specific signal in total protein sourced from the model system.
2) Next, the dynamic range of the assay needs to be determined. In an ideal situation, signal doubling (measured using peak area) is observed as sample concentration is doubled; however, in practice, a proportional change in signal to input in a predictable manner (e.g., linear fit) is sufficient for protein quantification. Additionally, this optimization will define protein concentration with high signal but still within the linear range for the experimental model.
3) Determine the optimal antibody concentration using the fixed protein concentration chosen in optimization step 2. As the antibody concentration increases, the signal increases until it plateaus at saturation. An antibody concentration near this saturation level is required for accurate measurement of protein concentration.
The process used to optimize protein concentrations, antibody dilutions, and exposure times for an automated capillary-based size assay6 is demonstrated using whole cell extracts isolated from BEAS-2B, an SV-40 transformed human bronchial epithelial cell line. Protein isolation from cell or tissue extracts can be performed using a number of published protocols7,8,9 and will not be covered here. Results of a trial experiment using the optimized conditions are also reported for total and phosphorylated (serine 15, serine 20) p53 in cultures exposed to doxorubicin (a common chemotherapeutic agent that induces cell apoptosis10) at 1.2, 1.8, and 2.4 µg/mL media for 4 h prior to harvest. The p53 peak areas are normalized to ɑ-tubulin, which is used as a loading control.
NOTE: Ensure that all reagents and samples are prepared according to the manufacturer's protocol, outlined below. Please wear proper personal protection equipment during this procedure, which includes nitrile gloves, lab coat, closed-toed shoes, and safety goggles. A table of specific materials, reagents and equipment required is provided separately. Total protein concentration of samples should be determined beforehand using established methodologies that are compatible with the lysate buffer used, such as Bradford assay11.
1. Preparation of samples and reagents from the standard pack as supplied by the manufacturer
2. Denaturation of samples and ladder
3. Preparation of antibodies
4. Preparation of Luminol-S and Peroxide
5. Preparation of the assay plate
Figure 1. Pipetting template for assay plate. Color coding represents proper reagents and samples (up to 24 total) added to the assay plate. Add biotinylated ladder to well A1 (orange), prepared samples from wells A2 up to A25 (light blue), Antibody Diluent 2 to wells B1-B25 and C1 (light green), primary antibody to wells C2 up to C25 (blue), streptavidin-HRP to well D1 (dark pink), secondary antibody to wells D2 up to D25 (dark green), and luminol-peroxide mix to wells E1 up to E25 (purple). Wash buffer is added to the first three rows of the larger mid-plate wells (dark blue). Please click here to view a larger version of this figure.
6. Starting the capillary immunoassay instrument
7. Experiment analysis
Exposure time – Determining signal burnout
Signal burnout can occur when the luminol and peroxide substrate is depleted too quickly. This can be determined by examining the data at different chemiluminescence exposure times. In the analysis software, go to "Edit -> Analysis -> Images". Exposures range from 5 to 480 s. The y-axis in an electropherogram reports signal/time, so the data from each exposure should have a similar signal/time coefficient. This coefficient decreases with sequentially longer exposures if luminol becomes depleted, as seen with the p53 DO-1 antibody (Figure 2). Because of substrate depletion, this assay can be considered measurable up to the 0.2 µg/µL concentration only at the 5 – 30 s exposures. Therefore, in this example, 15 s was determined to be the optimal data analysis exposure time for p53.
Lysate titration – Determining linear dynamic range
It is important that measurements be taken within the linear dynamic range of each assay, where changes in signal as measured by peak area are proportional to changes in the amount of protein in the sample. Using the optimal exposure time of 15 s chosen in the previous section, assay linearity is demonstrated for both p53 and ɑ-tubulin over greater than a 15-fold range of concentration (Figure 3). In our experience, a R2 value of >0.9 of a linear regression fit is considered acceptable for a dilution range of purified protein of known quantity (if assay is an absolute quantitative measurement) or sample lysate of unknown target protein (if assay is a relative quantitative measurement).
Optimization of antibody dilution
Using antibodies at saturating concentrations helps ensure that any signal changes measured are due only to changes in protein amount. As a demonstration, two BEAS-2B cell line whole cell extracts (0.2 µg/µL total protein loaded into the assay) were probed with serially diluted ɑ-tubulin antibody concentrations ranging from 1:25 – 1:800 (Figure 4). Chemiluminescent signal (here, measured as peak area) was plotted against antibody dilution. Saturation was observed near the 1:50 dilution where the curve begins a noticeable plateau.
Experimental trial – Doxorubicin treatment in BEAS-2B cells
Using optimized assay conditions, BEAS-2B cell culture was treated with three different concentrations of doxorubicin (1.2, 1.8, and 2.4 µg/mL) for 4 h (Figure 5, Table 1). Activation of p53 through post-translational modifications mediates several cellular responses, including cell cycle arrest, senescence, and apoptosis12. Specifically, the phosphorylation of serine 15 has been attributed to transcriptional activation of p53, resulting in apoptosis after doxorubicin treatment13. In this demonstration, ɑ-tubulin normalized peak areas are presented as fold of control. Interestingly, 3.5 to 4-fold increases in p53 phosphorylation at serine 15 and 2-fold increases in the level of p53 phosphorylated at serine 20 were observed after 4 h exposure to doxorubicin. These results indicate activation of p53; however, no dose-response is seen for the concentrations chosen (conversely, the lowest dose tested elicited the highest response). Total p53 did not demonstrate a clear treatment response in this model system. We have previously observed activation of p53 phosphorylation in the absence of increased levels of total p53 under similar conditions in zinc-treated BEAS-2B cells14.
Figure 2. Exposure image comparison to detect signal burnout. Lane views show decreasing protein concentrations for BEAS-2B lysates probed with p53 DO-1 antibody at a 1:500 dilution. Chemiluminescence signal coefficients, reported as peak heights in the instrument software, are superimposed. Unlike the peak heights, the visual band intensities are automatically generated and adjusted by the instrument to aid viewing of the bands and are not comparable from one panel to another. Note the decrease in chemiluminescence signal as exposure time increases, with the signal beginning to disappear (split peak) at the two longest exposures, indicating substrate depletion. Please click here to view a larger version of this figure.
Figure 3. Lysate titration showing the lane views. Lysate titration showing the lane views (A) of BEAS-2B lysate when probed with 1:500 p53 DO-1 or 1:50 ɑ-tubulin. Unlike the peak area values, the visual band intensities are automatically generated and adjusted by the instrument to aid viewing of the bands and are not comparable from one panel to another. Linear regression analysis (B) confirms the assays are linear over the entire range tested, from 0.01 to 0.20 µg/µL and 0.025 to 0.40 µg/µL, with R2 values of 0.999 and 0.985, respectively. Total protein concentrations in the middle of the linear range were chosen to accommodate potential target protein variation in either direction (e.g., 0.2 µg/µL for α-tubulin). Please click here to view a larger version of this figure.
Figure 4. α-tubulin antibody dilution curves for two separate BEAS-2B protein lysates with and without baseline normalization. A definite departure from linearity is seen at the 1:50 (0.02) dilution, indicating saturation. 1:50 was therefore chosen as the optimal dilution for this antibody. Please click here to view a larger version of this figure.
Figure 5.Effect of 4 h doxorubicin (DXN) treatment on total and serine phosphorylated p53 protein expression of BEAS-2B cells. Peak areas are normalized to α-tubulin and plotted as fold of control (CTL). Please click here to view a larger version of this figure.
Table 1. Effect of 4 h doxorubicin (DXN) treatment on total and serine phosphorylated p53 protein expression of BEAS-2B cells. Please click here to view a larger version of this table.
For decades, there has been sustained interest in the development of capillary electrophoretic-based immunoassay methods because of low sample and reagent expenditure, decreased processing time when compared to traditional methods, and high compatibility to automate the procedure4,15. There are a number of different protocols for the separation of proteins that have utilized capillaries, including electrophoretic, electrokinetic, polymer sieving, and isoelectric methods, which isolate proteins by different properties (respectively, electrostatic charge, partition equilibrium, sieving properties of the separating matrix, and pH)16. Here, we describe an antibody-based (or immunoassay) capillary electrophoresis method, using a polymer sieving separation, that has been automated and commercially adopted3. Advantages of this system include ease of use and operation, standardized and commercially available reagents, and reliable, sensitive measurements that require less reagent and samples compared to traditional protein assays such as western blot, enzyme-linked immunoassay, and other formats3,4,5. It has been noted in previous assessments of this technology that the size range of protein that can be assessed has been limited by the available separation matrix4, however recent offerings have expanded the measurable range from 2 to 440 kDa17. In addition, some lysate buffers are known to be incompatible with the assay18, therefore selection of the experimental reagents used must be considered beforehand.
A major advantage of an automated procedure with commercially available components is consistency of results through standardized methods and reagents. This minimizes chances of assay failure by automating critical steps within the procedure. However, it is important to note that certain practices must be adhered to during the protocol to minimize issues with the capillary electrophoretic-based immunoassay. First, it is critical that the luminol-S/peroxide mixture is prepared fresh and immediately before plate loading. Consistent timing will result in consistent luminescence after the oxidizing agent is added, which will result in consistent measurements for a particular antibody assay after assay. Furthermore, it is important that non-expired reagents are used, which primarily affects the potency of the oxidizing agent. Additionally, it is important that the loading order of samples, antibodies, and other reagents be strictly followed (see Figure 1). Any reagent pipetted out of place will result in assay failure and a wasted run.
Besides these critical steps, primary issues experienced with the technique can generally be overcome through optimization. Indeed, these conditions are specific to each model system/antibody combination and therefore should be determined empirically for each new assay. In this article, we focus on three common optimization procedures: exposure time, lysate titration, and primary antibody dilution. The ability to generate measurable results depends on analysis of an exposure time when the luminol substrate is not being rapidly depleted, as substrate depletion results in loss of signal. Lysate titration determines the linear dynamic range of each assay, which can differ with different model systems, as well as different antibodies, even for the same protein target. Antibody dilutions chosen at or near saturating concentrations ensure changes in signal will not be affected by a shortage of free antibody, but only by differing amount of available protein target epitope. Other considerations during the optimization process may include antibody incubation time and stacking/sample loading time. In most cases the default settings for the instrument offer the best balance of resolution and sensitivity. However, in some cases, poor resolution or sensitivity can be improved by adjusting these parameters.
Capillary electrophoretic-based immunoassay methods provide fast, efficient, and reproducible protein measurements. While these methods have primarily been utilized in research and development settings, the consistency of these technologies has potential utility in regulatory and clinical applications. For example, the identification of susceptible subpopulations to environmental toxicants or patients with progression of disease can be based on protein biomarkers measured in accessible matrices, such as blood, urine, and saliva. As reagent and operation costs drop and the number of samples and targets that can be simultaneously assessed increases, we will likely see capillary electrophoretic-based immunoassay methods used for these types of applications.
The authors have nothing to disclose.
The authors would like to thank Keith Tarpley of the US EPA Office of Research and Development-Research Triangle Park (ORD-RTP) Graphic and Media team for development, taping, and editing of the instructional video. We would also like to thank Deborah Pritchett from ProteinSimple for helpful conversations regarding optimization of our data. JM Guynn was supported by the Oak Ridge Institute for Science and Education Research/Participation Program at the US Environmental Protection Agency.
Wes instrument | ProteinSimple (Santa Clara, CA) | 004-600 | |
P53 DO-1 primary antibody | Santa Cruz Biotechnology, Inc. | sc-126 | |
phosphorylated p53 (ser 15) primary antibody | Cell Signaling Technology | 9286 | |
phosphorylated p53 (ser 20) primary antibody | Cell Signaling Technology | 9287 | |
alpha-tubulin primary antibody | Cell Signaling Technology | 3873 | used as a loading control |
Compass Software | ProteinSimple (Santa Clara, CA) | provided with the Wes | |
12-230 kDa Master kit | ProteinSimple (Santa Clara, CA) | PS MK02 (since replaced by a new kit #) | |
www.proteinsimple.com/consumables_sw_wes.html | INCLUDES PART NO: Wash Buffer (60 mL) 042-202 10X Sample Buffer (440 μL) 042-195 Pre-Filled Microplates (8) PS-PP01 Capillary Cartridges (8) PS-CC01 Antibody Diluent II (20 mL) 042-203 Luminol-S (1.5 mL) 042-233 Peroxide (1.5 mL) 042-234 Streptavidin-HRP (132 μL) 042-414 Standard Pack (8): Biotinylated ladder, fluorescent 5X master mix, DTT, and empty 0.6 mL tube PS-ST01 Anti-Rabbit Secondary Antibody 042-206 or Anti-Mouse Secondary Antibody 042-205 |
||
Name | Company | Catalog Number | Yorumlar |
Cell culture, treatment, and harvest (using vendor recommended protocols; protocols not included in manuscript) | |||
BEAS-2B cells | American Type Culture Collection (ATCC, Manassas, VA) | CRL-9609 | |
keratinocyte growth medium, KGM Gold | Lonza Ltd (Basel, Switzerland) | 192152 | for cell culture |
keratinocyte basal medium, KBM Gold | Lonza Ltd (Basel, Switzerland) | 192151 | serum free medium for chemical dosing |
doxorubicin | Sigma-Aldrich (St. Louis, MO) | D1515 | |
Coomassie Blue Bradford Assays | ThermoFisher Scientific (Waltham, MA) | 23200 | for protein quantification |
Nuclear Extract kit | Active Motif (Carlsbad, CA) | D1515 | used to prepare whole cell lysates |
INCLUDES: | |||
Lysis Buffer AM1 | |||
1M dithiothreitol (DTT) | |||
Protease Inhibitor Cocktail | |||
10X PBS | |||
Phosphatase Inhibitors |