Here, we describe a human blood-brain barrier model enabling to investigate lymphocyte transmigration into the central nervous system in vitro.
Lymphocyte extravasation into the central nervous system (CNS) is critical for immune surveillance. Disease-related alterations of lymphocyte extravasation might result in pathophysiological changes in the CNS. Thus, investigation of lymphocyte migration into the CNS is important to understand inflammatory CNS diseases and to develop new therapy approaches. Here we present an in vitro model of the human blood-brain barrier to study lymphocyte extravasation. Human brain microvascular endothelial cells (HBMEC) are confluently grown on a porous polyethylene terephthalate transwell insert to mimic the endothelium of the blood-brain barrier. Barrier function is validated by zonula occludens immunohistochemistry, transendothelial electrical resistance (TEER) measurements as well as analysis of evans blue permeation. This model allows investigation of the diapedesis of rare lymphocyte subsets such as CD56brightCD16dim/- NK cells. Furthermore, the effects of other cells, cytokines and chemokines, disease-related alterations, and distinct treatment regimens on the migratory capacity of lymphocytes can be studied. Finally, the impact of inflammatory stimuli as well as different treatment regimens on the endothelial barrier can be analyzed.
Lymphocyte migration from the blood into tissues is crucial for immune surveillance. A sequence of specific molecular interactions ensures site specific extravasation into small intestine, skin, lymph nodes, the central nervous system (CNS), and other tissues1. Alterations in lymphocyte migration are involved in the pathophysiology of a number of wide spread diseases2. Migration into the immune-privileged CNS is tightly regulated and accordingly alterations of this process are involved in CNS-related diseases like encephalomyelitis3, neuromyelitis optica, stroke, and multiple sclerosis (MS)2,4,5,6,7. Therefore, it is important to study lymphocyte extravasation to better understand disease pathophysiology and to develop tools for amelioration of disease burden8,9,10,11,12.
Lymphocytes migrate into the CNS via distinct routes. Extravasation through postcapillary venules into the subarachnoid space via the blood-cerebrospinal fluid barrier within the choroid plexus and across the blood-brain barrier have been described1,13,14,15. Migration across the blood-brain barrier is conducted by the interaction of lymphocytes with endothelial cells14. In contrast to endothelial cells in the periphery, endothelial cells of the CNS express high amounts of tight junction molecules, thereby strictly limiting the amount of cells and proteins capable of crossing the blood-brain barrier16. Inflammation results in loosening of tight junctions and induces the expression of adhesion molecules; thus, enhancing lymphocyte migration into the CNS1,17,18.
Extravasation via the blood-brain barrier is a multistep process. Lymphocytes tether to the endothelial cells and then roll along the endothelium in a process mainly mediated by selectins1,15. Subsequently, interactions between chemokines secreted by the endothelium and the respective chemokine receptors expressed on lymphocytes induce conformational changes of integrins, thereby promoting firm adhesion to the endothelial cells1. Finally, lymphocytes either crawl along the endothelial barrier against the blood flow before transmigrating into the perivascular space, or stall immediately and directly transmigrate at the site of firm adhesion1,19,20. All these steps of lymphocyte extravasation can be analyzed in vitro using distinct techniques21. Time-lapse video microscopy is used to study the initial tethering and rolling15. Adhesion assays provide detailed information about firm arrest to endothelial barriers22. Transmigration assays as demonstrated here allow analysis of immune-cell transmigration21,23,24,25,26,27,28,29.
Using the human in vitro blood brain barrier model, we could recently show that a higher migratory capacity of CD56brightCD16dim/- NK cells compared to their CD56dimCD16+ counterparts was reflected by a predominance of this NK cell subset in the intrathecal compartment21. Thus, our experimental setup seems to be suitable to mimic the in vivo situation.
1. Cell Culture of Human Brain Microvascular Endothelial Cells (HBMEC)
2. Preparation of the Cell Culture Inserts
3. Quality Control with Evans Blue on the Day of the Transmigration Assay
4. Migration Assay
5. Flow Cytometry
Representative results showing transmigration of NK-cell and T-cell subsets using the human blood-brain barrier model (Figure 1A) are shown. The integrity of the HBMEC monolayer was validated by staining of the tight junction molecule ZO-1, transendothelial electrical resistance (TEER) measurements, and evans blue permeation (Figure 1B). Following 3 – 4 days culture HBMEC expressed the tight junction molecule ZO-1 (Figure 1B, left). Furthermore, HBMEC grew in monolayers exhibiting transendothelial electrical resistance (Figure 1B middle) as well as reduced permeation for evans blue (Figure 1B, right). HBMEC monolayers were used to study the transmigration of NK cells including CD56brightCD16dim/- and CD56dimCD16+ NK-cell subsets and T cells including CD4+ and CD8+ T cells as two examples (Figure 1D+E, respectively). The percentage of migrated cells was calculated based on cell counts obtained by flow cytometry and normalized using flow count fluorospheres as an internal control (Figure 1C). The HBMEC monolayer was stimulated with IFN-γ and TNF-α 24h prior the assay to mimic inflammatory conditions. Cytokine stimulation resulted in increased migration of all analyzed lymphocyte populations. This might be due to an increased expression of adhesion molecules including ICAM-1 (data not shown). CD56brightCD16dim/- NK cells exhibited a higher migratory capacity when compared to their CD56dimCD16+ NK across both unstimulated (10.88% vs. 0.86%) and IFN-γγ/TNF-α stimulated (18.22% vs. 2.94%) HBMEC (Figure 1D). However, the relative increase of transmigration as a result of inflammation was higher for the CD56dimCD16+ NK-cell subset (+342% vs. +167% for CD56brightCD16dim/-). These results mimic the in vivo observations that CD56brightCD16dim/- NK cells are enriched in the intrathecal compartment. Thus, the blood-brain barrier model seems to be suitable to analyze basic principles of immune-cell diapedesis of rare lymphocyte populations into the CNS21. Finally, the transmigratory capacity of CD4 and CD8 T-cell subsets is shown (Figure 1E).
Figure 1: Differential Migration of NK-cell Subsets across Uninflamed and Inflamed HBMEC Monolayers. A. A picture of transwell inserts (left) and illustration of the experimental setup (right). B. Validation of HBMEC barrier functions. Left: immunohistochemical staining of the tight junction molecule ZO-1 using rabbit anti-human ZO-1 (abcam, 1:200) and goat anti-rabbit IgG-Cy3 (1:300) on HBMEC cultivated for 3 days. Center: transendothelial electrical resistance (TEER) of HBMEC between day 2 and day 4 of cultivation. Right: standard curve for evans blue permeation for HBMEC with ("inflamed", red) or without ("uninflamed", black) stimulation with 500 U/mL IFN-γ and TNF-α for 24 hours. Transmigration assays are performed 72 – 96 hours after seeding of the HBMEC (black arrow). C-E. PBMC derived from 16 healthy individuals were subjected to migration assays as described in the protocol section. 24 h prior to the assay, half of the cell culture inserts were stimulated with 500 IU/mL IFN-γ and TNF-α. Transmigrated cells were harvested and analyzed by flow cytometry. C. Representative results for PBMC derived from the in vitro control well (top) and after migration across uninflamed HBMEC (bottom). NK cells were gated from total lymphocytes as CD3–CD56+ cells and further distinguished into CD56brightCD16dim/- ("CD56bright") and CD56dimCD16+ ("CD56dim") NK-cell subsets. Flow count fluorospheres ("beads") were gated based on FSC/SSC characteristics and their number was determined in a FL3 versus time plot. Exemplary calculations to determine the percentage of migrated CD56bright and CD56dim NK cells are shown on the right. D. Percentage of migrated NK cells as well as CD56bright and CD56dim NK-cell subsets, and E. percentage of migrated T cells including CD4+ and CD8+ T-cell subsets following transmigration across uninflamed (black) or inflamed (red) HBMEC depicted as mean ± SEM. P-values were calculated by paired student t-test; **p<0.01, ***p<0.001. Please click here to view a larger version of this figure.
Here we present a technique to investigate the transmigration of lymphocytes across the human blood-brain barrier. In vitro analysis of lymphocyte migration to the CNS is important to study basic processes of lymphocyte extravasation, potential disease-related alterations, and new therapeutic approaches.
Several modifications of the blood-brain barrier model are possible. For example, cells from the upper compartment could be analyzed to investigate the composition of the non-migrated cell population. Furthermore, treatment of the HBMEC monolayer with IFN-γ and TNF-α 24 hours prior to the assay can be used to mimic an inflamed blood-brain barrier in order to study the effect of inflammatory CNS disorders21,25. Similarly, treatment of HBMEC or lymphocytes with other substances allows investigating their effects on lymphocyte extravasation (e.g. their effect on adhesion molecules)30,31. The involvement of certain adhesion molecules can be studied using blocking antibodies for integrins or their ligands32. Furthermore, the experimental setup presented here allows analysis of chemotactic effects from chemokines or supernatants derived from astrocytes or other cells33,34. Replacement of HBMEC with primary human brain derived epithelial cells widens the spectrum of this experimental setup for investigation of the blood-cerebrospinal fluid barrier15. HBMEC should not be replaced with immortalized endothelial cells or cells derived from other organs to maintain CNS-specificity of the model. However, brain-derived endothelial cells from other species might be used to analyze transmigration in the respective animals35. In addition, retinoic acid or hydrocortisone have been described to increase barrier functions and might thus be employed36,37. In case of limited cell numbers the amount of cells subjected to the assay might be reduced, because our model provides linear recovery rates between 2 x 105 and 1 x 106 PBMC (data not shown). To analyze rare cell populations following transmigration it might be necessary to pool cells from several wells in order to obtain sufficient cells required for flow cytometry. Finally, our experimental setup could also be used to study the drug delivery into the CNS38. A pore size of 3 µm is typically used to allow lymphocyte transmigration, whereas a pore size of 0.4 µm prevents lymphocyte transmigration, but allows to study drug delivery39,40,41,42.
Despite the various applications of the experimental setup described here, several points have to be kept in mind to ensure meaningful results. The integrity of the porous membrane as well as the HBMEC monolayer is critical. Thus, it is mandatory to avoid physical damage of the membrane, for example with pipet tips. Addition of fluids or cell suspension to the upper part of the cell culture insert should be performed without direct contact. Droplets might be wiped off at the border of the cell culture insert. Horizontal placement of the pipet tip ensures protection of the membrane, when the abluminal membrane is rinsed at the end of the migration assay. The quality of the HBMEC monolayer can be analyzed by microscopic evaluation of confluence as well as evans blue permeation as demonstrated for the assessment of blood-brain barrier integrity in rodent experiments43. Centrifugation of HBMEC at low g forces and usage of early passages (i.e. 1 – 15) ensures quality and uniformity of the monolayer. To prevent dissolution from the porous membrane, it is important to adhere to the described order of aspiration and addition of medium, when working with the HBMEC monolayer.
Although adherence to the protocol described here ensures meaningful and reproducible results, this technique has some limitations. First of all, in vivo the blood-brain barrier is formed by a number of cells, which interact in various ways and strengthen the barrier function by affecting the formation of tight junctions1. Therefore, although this blood-brain barrier model is a good approximation of the in vivo situation, important aspects are missing. In addition, lymphocyte extravasation into the CNS across the blood-brain barrier is a multistep process. While each single step can be investigated separately, the technique presented here does not provide information on the whole process of extravasation under the influence of shear forces2,44,45,46. Finally, analysis of migrated cells from PBMC might be challenging depending on the frequency of the cells of interest, because usually only single-digit frequencies of cells transmigrate. Therefore, separation of the populations of interest prior to the assay or pooling of cells migrated across multiple cell culture inserts might be necessary. Other models for the analysis of leukocyte migration into the CNS cover some of the aspects missing in our model. Co-culture with astrocytes, pericytes, and/or neurons are used to mimic the complexity of the blood-brain barrier better47. Models including shear forces such as DIV-BBB reflect more the physiological conditions, thus, enabling a more sophisticated analysis of lymphocyte diapedesis48.
In summary, we present an easily accessible technique suitable for the investigation of qualitative and quantitative lymphocyte diapedesis across the human blood-brain barrier.
The authors have nothing to disclose.
This study has been supported by the Collaborative Research Centre CRC TR128 “Initiating/Effector versus Regulatory Mechanisms in Multiple Sclerosis-Progress towards Tackling the Disease” (Project A9 to H.W. and C.C.G., project B1 to N.S.).
PBS | Gibco | 14190-094 | without CaCl2 or MgCl2 |
Fibronectin 1mg/mL | Sigma | F1141-5MG | from bovine plasma |
T-25 cell culture flask | Greiner BioOne | 690160 | |
HBMEC | ScienCell | 1000 | |
Pelobiotech | PB-H-6023 | ||
Accutase | Sigma | A6964-100ML | |
ECM-b | ScienCell | 1001-b | |
FBS | ScienCell | 1001-b | |
Penicillin/Streptomycin | ScienCell | 1001-b | |
Endothelial cell growth supplement | ScienCell | 1001-b | |
Transwell | Corning | 3472 | clear, 6.5mm diameter, 3.0µm pore size |
96-well flat bottom plate | Corning | 3596 | |
Evans blue | Sigma | E2129-10G | stock solution: 1 g/50 mL PBS |
B27 | Gibco | 17504-044 | 50x concentrated |
Infinite M200Pro | Tecan | ||
96-well black flat bottom plate | Greiner BioOne | 675086 | |
48-well plate | Corning | 3526 | |
RPMI 1640 | Gibco | 61870-010 | |
Flow Count Fluorospheres | Beckman Coulter | 7547053 | |
Na-EDTA | Sigma | E5134 | |
BSA | Sigma | A2153 | |
Gallios 10-color flow cytometer | Beckman Coulter | ||
Kaluza 1.5a | Beckman Coulter | ||
TNF-α | Peprotech | 300-01A | |
IFN-γ | Peprotech | 300-02 | |
CD3-PerCP/Cy5.5 | Biolegend | 300430 | clone UCHT1 |
CD56-PC7 | Beckman Coulter | A21692 | clone N901 |
CD16-A750 | Beckman Coulter | A66330 | clone 3G8 |
CD4-FITC | Biolegend | 300506 | clone RPA-T4 |
CD8-A700 | Beckman Coulter | A66332 | clone B9.11 |