We describe a method for generating localization and affinity purification (LAP)-tagged inducible stable cell lines for investigating protein function, spatiotemporal subcellular localization and protein-protein interaction networks.
Multi-protein complexes, rather than single proteins acting in isolation, often govern molecular pathways regulating cellular homeostasis. Based on this principle, the purification of critical proteins required for the functioning of these pathways along with their native interacting partners has not only allowed the mapping of the protein constituents of these pathways, but has also provided a deeper understanding of how these proteins coordinate to regulate these pathways. Within this context, understanding a protein’s spatiotemporal localization and its protein-protein interaction network can aid in defining its role within a pathway, as well as how its misregulation may lead to disease pathogenesis. To address this need, several approaches for protein purification such as tandem affinity purification (TAP) and localization and affinity purification (LAP) have been designed and used successfully. Nevertheless, in order to apply these approaches to pathway-scale proteomic analyses, these strategies must be supplemented with modern technological developments in cloning and mammalian stable cell line generation. Here, we describe a method for generating LAP-tagged human inducible stable cell lines for investigating protein subcellular localization and protein-protein interaction networks. This approach has been successfully applied to the dissection of multiple cellular pathways including cell division and is compatible with high-throughput proteomic analyses.
To investigate the cellular function of an uncharacterized protein it is important to determine its in vivo spatiotemporal subcellular localization and its interacting protein partners. Traditionally, single and tandem epitope tags fused to the N or C-terminus of a protein of interest have been used to facilitate protein localization and protein interaction studies. For example, the tandem affinity purification (TAP) technology has enabled the isolation of native protein complexes, even those that are in low abundance, in both yeast and mammalian cell lines1,2. The localization and affinity purification (LAP) technology, is a more recent development that modifies the TAP procedure to include a localization component through the introduction of the green fluorescent protein (GFP) as one of the epitope tags3. This approach has given researchers a deeper understanding of a protein’s subcellular localization in living cells while also retaining the ability to perform TAP complex purifications to map protein-protein interaction networks.
However, there are many issues associated with the use of TAP/LAP technologies that has hampered their widespread use in mammalian cells. For example, the length of time that is necessary to generate a stable cell line expressing a TAP/LAP tagged protein of interest; which typically relies on cloning the gene of interest into a viral vector and selecting single cell stable integrants with the desired expression level. Additionally, many cellular pathways are sensitive to constitutive protein overexpression (even at low levels) and can arrest cells or trigger cell death over time making the generation of a TAP/LAP stable cell line impossible. These and other constraints have impeded LAP/TAP methodologies from becoming high-throughput systems for protein localization and protein complex elucidation. Therefore, there has been considerable interest in the development of an inducible high-throughput LAP-tagging system for mammalian cells that takes advantage of current innovations in cloning and cell line technologies.
Here we present a protocol for generating stable cell lines with Doxycycline/Tetracycline (Dox/Tet) inducible LAP-tagged proteins of interest that applies advances in both cloning and mammalian cell line technologies. This approach streamlines the acquisition of data with regards to LAP-tagged protein subcellular localization, protein complex purification and identification of interacting proteins4. Although affinity proteomics utilizes a wide range of techniques for protein complex elucidation5, our approach is beneficial for expediting the identification of these complexes and their native interaction networks and is amenable to high-throughput protein tagging that is necessary to investigate complex biological pathways that contain a multitude of protein constituents. Key to this approach are advancements in cloning strategies that enable high fidelity and expedited cloning of target genes into an array of vectors for gene expression in vitro, in various organisms like bacteria and baculovirus, and in mammalian cells6,7. Additionally, the ORFeome collaboration has cloned thousands of sequence validated open reading frames in vectors that incorporate these advances in cloning, which are available to the scientific community8-11. In our system, the pGLAP1 LAP-tagging vector enables the simultaneous cloning of a large number of clones, which facilitates high-throughput LAP-tagging. This expedited cloning procedure is coupled to a streamlined approach for generating cell lines with LAP-tagged genes of interest inserted at a single pre-determined genomic locus. This makes use of cell lines that contain a single flippase recognition target (FRT) site within their genome, which is the site of integration for LAP-tagged genes. These cell lines also express the tetracycline repressor (TetR) that binds to Tet operators (TetO2) upstream of the LAP-tagged genes and silences their expression in the absence of Dox/Tet. This allows for Dox/Tet inducible expression of the LAP-tagged protein at any given time. Having the capability of inducible LAP-tagged protein expression is critical, since many cellular pathways are sensitive to the levels of critical proteins governing the pathway and can arrest cell growth or trigger cell death when these proteins are constitutively overexpressed, even at low levels, making the generation of non-inducible LAP-tagged stable cell lines impossible12.
NOTE: An overview of the generation of inducible LAP-tagged stable cell lines for any protein of interest is illustrated in Figure 1 and the overview of LAP-tagged protein expression, purification and preparation for mass proteomic analyses is illustrated in Figure 3.
1. Cloning the Open Reading Frame (ORF) of the Gene of Interest into the LAP-tag Vector
2. Generation of an Inducible Stable Cell Line that Expresses the LAP-tagged Gene of Interest
3. Purification of LAP-tagged Protein Complexes
NOTE: The following LAP-tagged protein purification protocol details recommendations on conditions and volumes used for a typical LAP-tagged protein purification based on previous experience. However, caution should be exercised to ensure that empirical optimization is carried out for any protein complex and protein expression level of interest to provide the best results.
4. Identify Interacting Proteins by Mass Spectrometry Analysis
To highlight the utility of this system, the open reading frame (ORF) of the Tau microtubule binding protein was cloned into the shuttle vector by amplifying the Tau ORF with primers containing attB1 and attB2 sites (Table 1) and incubating the PCR products with the shuttle vector and a recombinase that mediates the insertion of the PCR products into the shuttle vector. The reaction products were used to transform DH5α bacteria13 and plasmid DNA from Kanamycin resistant colonies was sequenced to ensure Tau insertion. A sequence validated shuttle-Tau vector was then used to transfer the Tau ORF into the pGLAP1 vector, which fused Tau in frame with the LAP (EGFP-TEV-S-Protein) tag, by incubating the shuttle-Tau vector with the pGLAP1 vector and the recombinase that mediates the transfer of the ORF from the shuttle vector to pGLAP1. The reaction products were used to transform DH5α bacteria13 and plasmid DNA from Ampicillin resistant colonies was sequenced to ensure that the LAP-Tau fusion was in frame. Sequence validated pGLAP1-LAP-Tau was then co-transfected with a vector that expresses the flippase recombination enzyme into HEK293 cells that contained a single flippase recognition target (FRT) site within their genome, which is the site of integration for LAP-tagged genes14. This cell line also expressed the TetR that binds to Tet operators upstream of the LAP-tagged genes and silences their expression in the absence of Tet/Dox. Stable integrants were selected with -Tet DMEM/F12 media with 100 µg/ml Hygromycin for 5 days. Individual Hygromycin resistant cell foci were harvested by adding 20 µl of trypsin on top and pipetting up and down 2 times. Cells were placed in a 24 well plate and expanded by continual growth in -Tet DMEM/F12 media.
To verify that the Hygromycin resistant cells were capable of expressing LAP-Tau, HEK293 LAP-Tau cells were induced with 0.1 µg/ml Dox for 15 hr and protein extracts were prepared from non-induced and Dox-induced cells. These extracts were separated by SDS-PAGE, transferred to a PVDF membrane, and immunoblotted for GFP and Tubulin as loading control. As seen in Figure 4A, LAP-Tau (visualized with anti-GFP antibodies) was only expressed in the presence of Dox. To validate that LAP-Tau was properly localized to the mitotic microtubule spindle during mitosis, as had been previously shown for endogenous Tau18, HEK293 LAP-Tau cells were induced with 0.1 µg/ml Dox for 15 hr and cells were fixed with 4% paraformaldehyde and co-stained for DNA (Hoechst 33342) and microtubules (anti-Tubulin antibodies). Consistently, LAP-Tau was localized to the mitotic spindle during metaphase of mitosis (Figure 4B). To verify that LAP-Tau and its interacting proteins could be purified with this system, HEK293 LAP-Tau cells were grown in roller bottles to ~70% confluency, induced with 0.1 µg/ml Dox for 15 hr, harvested by agitation, lysed with LAP300 buffer, and LAP-Tau was purified using the above protocol. Eluates from the LAP-Tau purification were resolved by SDS-PAGE and the gel was silver stained. Figure 4C shows the LAP-Tau purification, marked with an asterisk is LAP-Tau and several other bands indicative of Tau interacting proteins can be seen.
Figure 1: Overview of the Generation of LAP-tagged Inducible Stable Cell Lines for any Protein of Interest. The open reading frame (ORF) of genes of interest are amplified with attB1 and attB2 sites flanking the 5' and 3' end sequences, respectively (primer sequences are given in Table 1) and cloned into the shuttle vector. Sequence verified shuttle vectors with the gene of interest are then used to transfer the gene of interest into the pGLAP1 vector. The sequence verified pGLAP1 vector with the gene of interest is then co-transfected with the vector containing the flippase recombinase into the desired cell line that contains a single flippase recognition target (FRT) site within their genome, which is the site of integration for LAP-tagged genes. These cell lines also express the Tet repressor (TetR) that binds to Tet operators (TetO2) upstream of the LAP-tagged genes and silences their expression in the absence of Tet/Dox. The LAP-tagged gene of interest is then recombined into the FRT site and stable integrants are selected with Hygromycin. Please click here to view a larger version of this figure.
Figure 2: Overview of the Applications for LAP-tagged Stable Cell Lines. LAP-tagged inducible stable cell lines are induced to express the LAP-tagged protein of interest by Dox addition and can be synchronized at various stages of the cell cycle or can be stimulated with chemicals or ligands to activate any desired signaling pathway. The subcellular localization of the LAP-tagged protein of interest can be analyzed by live cell or fixed cell imaging. LAP-tagged proteins can also be tandem affinity purified and their interacting proteins can be identified by liquid chromatography tandem mass spectrometry (LC-MS/MS). Finally, Cytoscape can be used to generate a protein-protein interaction network of the bait protein. Dox indicates Doxycycline, IP indicates immunoprecipitate, EGFP indicates enhanced green fluorescent protein, Tev indicates TEV protease cleavage site, and S indicates S-tag. Please click here to view a larger version of this figure.
Figure 3: Overview of LAP-tagged Protein Expression, Purification and Preparation for Mass Spectrometry. The protocol has 9 steps: 1) growth and induction of LAP-tagged protein expression, 2) cell harvesting and lysis, 3) the preparation of lysates, 4) the binding of lysates to anti-GFP beads, 5) TEV protease cleavage of the GFP-tag, 6) the binding of lysates to S-protein beads, 7) the elution of the bait protein and interacting proteins, and 8-9) the preparation of samples for mass spectrometry-based proteomic analyses. Please click here to view a larger version of this figure.
Figure 4: Verification of LAP-Tau expression. (A) Western blot (WB) analysis of protein samples from non-induced and Dox induced LAP-Tau HEK293 cells probed with anti-GFP and anti-Tubulin antibodies to detect the LAP-tagged Tau protein and the Tubulin loading control, respectively. Note that LAP-Tau is only expressed when the cells are induced with Dox. (B) Mitotic cells expressing LAP-Tau were fixed and co-stained for DNA (Hoechst 33342) and Tubulin (Tub) with anti-tubulin antibodies and the subcellular localization of LAP-tau was analyzed by fluorescence microcopy. Note that LAP-Tau localizes to the mitotic spindle and spindle poles during mitosis. (C) Silver stained gel of the LAP-Tau purification. MW indicates molecular weight, CL indicates cleared lysates, and E indicates final eluates. Samples were run on a 4-20% SDS-PAGE and the gel was silver stained to visualize the purified proteins. Note that a band corresponding to LAP-Tau is marked with an asterisk and several other bands corresponding to co-purifying proteins can be seen. Please click here to view a larger version of this figure.
N-terminal fusion | |
Forward | 5'-GGGGACAAGT TTGTACAAAAAAGCAGGCTTCATG-(>18gsn)-3’ |
Reverse | 5'-GGGGACCACTTTGTACAAGAAAGCTGGGTT TTATCA-(>18gsn)-3’ |
C-terminal fusion | |
Forward | 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCACC-(>18gsn)-3’ |
Reverse | 5'-GGGGACCACTTTGTACAAGAAAGCTGGGTG-(>18gsn)-3’ |
Table 1: Forward and Reverse Primers for Amplifying ORFs or Interest for Insertion into the Shuttle Vector. The attB sites are highlighted in bold letters, gsn denotes that more than 18 gene specific nucleotides are added to the primer.
Step | Temperature | Time | |
Initial denaturation | 94 °C | 2 min | |
PCR Amplification Cycles (35) | Denature | 94 °C | 30 sec |
Anneal | 55 °C (depending on the primer Tm) | 30 sec | |
Extend | 72 °C | 1 min/kb | |
Hold | 4 °C | indefinitely |
Table 2: PCR Conditions for Amplification of the ORFs of Interest.
Vector | Forward Sequencing Primer | Reverse Sequencing Primer |
Shuttle Vector | 5’-TGTAAAACGACGGCCAGT-3’ | 5’-CAGGAAACAGCTATGAC-3’ |
Table 3: Forward and Reverse Sequencing Primers for the Shuttle Vector.
ID | Structure | Parental | Promoter | Bac Res | Mam Res | Tet reg? |
pGLAP1 | N-term EGFP-TEV-S peptide | pcDNA5/FRT/TO | CMV | Amp | Hyg | Yes |
pGLAP2 | N-term Flag-TEV-S peptide | pcDNA5/FRT/TO | CMV | Amp | Hyg | Yes |
pGLAP3 | N-term EGFP-TEV-S peptide; C-term V5 | pEF5/FRT-V5 | EF1a | Amp | Hyg | No |
pGLAP4 | N-term Flag-TEV-S peptide; ; C-term V5 | pEF5/FRT-V5 | EF1a | Amp | Hyg | No |
pGLAP5 | C-term S peptide-PreProt x2-EGFP | pEF5/FRT-V5 | EF1a | Amp | Hyg | No |
Table 4: List of Available LAP/TAP Vectors with Variable Promoters, Epitope-tags, and Dox Inducible Expression Capabilities for N or C-terminal Protein Tagging. Vectors are commercially available. Bac Res indicates bacterial resistance marker, Mam Res indicates mammalian cell resistance marker, Tet reg? indicates whether expression is Tet/Dox regulatable.
Vector | Forward Sequencing Primer | Reverse Sequencing Primer |
pGLAP1 | 5’-ATCACTCTCGGCATGGACGAGCTGTACAAG-3’ | 5’-TGGCTGGCAACTAGAAGGCACAGTCGAGGC-3’ |
pGLAP2 | 5’-CGAACGCCAGCACATGGACAGGG-3’ | 5’-TGGCTGGCAACTAGAAGGCACAGTCGAGGC-3’ |
pGLAP3 | 5’-AGAAACCGCTGCTGCTAA-3’ | 5’-TAGAAGGCACAGTCGAGG-3’ |
pGLAP4 | 5’-AGACCCAAGCTGGCTAGGTAAGC-3’ | 5’-TAGAAGGCACAGTCGAGG-3’ |
pGLAP5 | 5’-CGTAATACGACTCACTATAG-3’ | 5’-TCCAGGGTCAAGGAAGGCACGG-3’ |
Table 5: Forward and Reverse Sequencing Primers for pGLAP Vectors.
The outlined protocol describes the cloning of genes of interest into the LAP-tagging vector, the generation of inducible LAP-tagged stable cell lines, and the purification of LAP-tagged protein complexes for proteomic analyses. With respect to other LAP/TAP-tagging approaches, this protocol has been streamlined to be compatible with high-throughput approaches to map protein localization and protein-protein interactions within any cellular pathway. This approach has been widely applied to the functional characterization of proteins critical for cell cycle progression, mitotic spindle assembly, spindle pole homeostasis, and ciliogenesis to name a few and has aided the understanding of how misregulation of these proteins can lead to human diseases15,16,19,20. For example, our group recently utilized this system to define the function and regulation of the STARD9 mitotic kinesin (a candidate cancer target) in spindle assembly15,21, to define a new molecular link between the Tctex1d2 dynein light chain and short rib polydactyly syndromes (SRPS)19, and to define a new molecular link to understanding how mutation of the Mid2 ubiquitin ligase can lead to X-linked intellectual disabilities16. Other laboratories have also successfully applied this method, including one that determined that Tctn1, a regulator of mouse Hedgehog signaling, was a part of a ciliopathy-associated protein complex that regulated ciliary membrane composition and ciliogenesis in a tissue-dependent manner22,23. Therefore, this protocol can be broadly applied to the dissection of any cellular pathway.
A critical step in this protocol is the selection of LAP-tagged stable cell lines that are Hygromycin resistant. Special care should be taken to ensure that all cells in the control plate are dead before selecting foci in the experimental plate for amplification. Hygromycin can also be added during routine cell culturing of LAP-tagged stable cell lines to further ensure that all cells maintain the LAP-tagged gene of interest at the FRT site. We caution that not all LAP-tagged proteins will be functional and that it is important to have assays in place that can be used to test protein function. Examples of assays used to test protein function include the rescue of siRNA-induced phenotypes and in vitro activity assays. To address any potential problems with the addition of a large LAP-tag, we have previously generated TAP-tag vectors compatible with this system that contain smaller tags, like FLAG, which are less likely to inhibit the function and localization of the protein of interest4. In addition, LAP-tagging vectors exist for generating C-terminal LAP-tagged proteins or C-terminal TAP-tagged proteins that are compatible with this system, which can be used in cases where a LAP/TAP tag is not tolerated at the N-terminus of a protein. Additionally, the salt and detergent concentrations of the purification buffers (LAPXN) can be modified to increase or decrease the purification stringency if none or too many interactions are observed. Similarly, the tandem affinity purification procedure is more stringent than single purification procedures and weak interactors may be lost, thus a single purification scheme can be used when few or no interactors are identified.
It is important to note that other GFP epitope tagging approaches exist that allow large scale GFP protein tagging for protein localization and purification studies24,25. These include the BAC TransgenOmics approach that utilizes bacterial artificial chromosomes to express GFP-tagged genes of interest from their native environment that contains all the regulatory elements, which mimics endogenous gene expression24. More recently, CAS9/single-guided RNA (sgRNA) ribonucleoprotein complexes (RNPs) have been used to endogenously tag genes of interest with a split-GFP system that allows the expression of GFP-tagged genes from their endogenous genomic loci25. Although both of these approaches enable the expression of tagged proteins under endogenous conditions, compared to the LAP-tagging protocol described here, they do not allow for inducible and tunable expression of the tagged genes of interest. Additionally, they have yet to be applied to tandem epitope tagging for TAP. It is also important to note that other tagging systems can also be modified to become compatible with the system described here for generating inducible epitope-tagged stable cell lines. For example, proximity-dependent biotin identification (BioID) has garnered considerable attention due to its ability to define spatial and temporal relationships among interacting proteins26. This technique exploits protein fusions to a promiscuous strain of the Escherichia coli biotin ligase BirA, which biotinylates any protein within a ~10 nm radius of the enzyme. The biotinylated proteins are then affinity purified using biotin-affinity capture and analyzed for composition by mass spectrometry. BirA will biotinylate any protein in close proximity, even transiently, which makes it especially suited for detecting weaker interacting partners within a complex27. Additionally, the purification scheme does not necessitate that endogenous protein-protein interactions remain intact and can be carried out under denaturing conditions, thus reducing the rate of false positives. Within our current protocol, the substitution of the pGLAP1 vector by a BirA-tagging vector could transform this system from identifying protein-protein interactions based on affinity to detecting them based on proximity. Such a system would be highly advantageous for detecting transient protein interactions as is the case between many enzyme-substrate interactions and for mapping the spatiotemporal protein-protein interactions within defined structures as has been carried out for the centrosome and cilia26,28.
The authors have nothing to disclose.
This work was supported by a National Science Foundation Grant NSF-MCB1243645 (JZT), any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Flp-In T-REx Core Kit | Invitrogen | K6500-01 | Kit for generating cell lines that contain an FRT site and TrtR expression |
PETG, 5X | Nunc, Inc. | 73520-734 | Roller bottle for growing cells |
PETG, 2.5X | Nunc, Inc. | 73520-420 | Roller bottle for growing cells |
Cell stackers | Corning CellSTACK | 3271 | Cell stacker for growing cells |
500 mL conical centrifuge tubes | Corning | 431123 | Tubes for harvesting cells |
Anti-GFP antibody | Invitrogen | A11122 | Rabbit anti GFP antibody |
Affiprep Protein A beads | Biorad | 156-0006 | Used as a matrix for conjugating anti-GFP antibodies |
Dimethylpimelimidate (DMP) | ThermoFisher Scientific | 21667 | Used for conjugating anti-GFP antibodies to Protein A beads |
TLA100.3 tubes | Beckman | 349622 | Tubes for centrifuging protein lysates during the clearing step |
TEV protease | Invitrogen | 12575-015 | Used for cleaving the GFP tag off of N-terminal LAP-tagged proteins |
Precession Protease | GE Healthcare | 27-0843-01 | Used for cleaving the GFP tag off of C-terminal LAP-tagged proteins |
S-protein agarose | Novagen | 69704 | Used as a second affinity matrix during the purification of LAP-tagged protein complexes |
QIAquick DNA gel extraction kit | Qiagen | 28704/28706 | For use in purifying PCR products from an agarose gel |
BP clonase II | Invitrogen | 11789020 | Used for cloning ORF PCR products into the pDONR221 shuttle vector |
LR clonase II | Invitrogen | 11791020 | Used for cloning the ORF of the gene of interest into the pGLAP1 LAP-tagging vector |
ccdB Survival 2 T1R E. coli | Invitrogen | A10460 | Used for propgating shuttle vectors and pGLAP empty vectors |
Fugene 6 | Promega | E2691 | Transfection reagent for transfecting vectors into human cells |
Tetracycline | Invitrogen | Q100-19 | Drug for inducing Dox/Tet inducible protein expression |
Doxycycline | Clontech | 631311 | Drug for inducing Dox/Tet inducible protein expression |
Hygromycin B | Invitrogen | 10687010 | Drug for selecting stable LAP-tagged integrants |
Kanamycin | Corning | 61-176-RG | Drug for selecting Kanamycin resistant bacterial colonies |
Ampicillin | Fisher | BP1760-5 | Drug for selecting Ampicillin resistant bacterial colonies |
4-20% Tris Glycine SDS-PAGE gels | Biorad | 4561094 | Used for separating protein samples and final LAP-tag purification eluates |
Silver Stain Plus Kit | Biorad | 1610449 | Used for silver staining the eluates of LAP-tagged pufications and samples collected throughout the purification process |
Coomassie Blue stain | Invitrogen | LC6060 | Used for staining SDS-PAGE gels to visulize LAP-tagged purifications and cutting out protein bands, mass spectrometry compatible |
Shuttle vector pDONR221 | Invitrogen | 12536017 | Shuttle vector for cloning the ORFs of genes of interest |
Flippase expressing vector pOG44 | Invitrogen | V600520 | Vector that expresses the Flippase recombinase for integrating LAP-tagged genes into the genome of FRT site containing cell lines |
Platinum Taq DNA Polymerase | ThermoFisher Scientific | 10966018 | Used for PCR amplification of the ORFs of genes of interest |
4X Laemmli sample buffer | Biorad | 1610747 | Sample buffer for eluting purified LAP-tagged protein complexes from the bead matrix |
Luria broth (LB) media | Fisher | BP9723-2 | Used for growing DH5α bacteria |
DNA miniprep kit | Promega | A1222 | Used for making DNA plasmid minipreps |
DMEM/F12 media | Hyclone | SH30023.01 | For growing Hek293 human cells |
FBS lacking Tet | Altanta Biologicals | S10350 | Used for making -Tet DMEM/F12 media for generating and growing inducible LAP-tagged stable cell lines |
Trypsin | Hyclone | SH30042.01 | For lifting Hek293 cell foci from plates |
Protease inhibitor tablets | Roche | 11836170001 | Used for making protocol buffers, EDTA-free |
10% nonyl phenoxypolyethoxylethanol | Roche | 11332473001 | Used for making protocol buffers |
PBS | Corning | 21-040-CM | Used for making protocol buffers |
Tween-20 | Fisher | BP337-500 | Used for making protocol buffers |
Sodium Borate | Fisher | S249-500 | Used for making protocol buffers |
Boric Acid | Fisher | A78-500 | Used for making protocol buffers |
Ethanolamine | Calbiochem | 34115 | Used for making protocol buffers |
NaCl | Fisher | P217-3 | Used for making protocol buffers |
KCl | Fisher | BP358-10 | Used for making protocol buffers |
Dithiothreitol (DTT) | Fisher | BP172-25 | Used for making protocol buffers |
MgCl2 | Fisher | M33-500 | Used for making protocol buffers |
Tris base | Fisher | BP152-5 | Used for making protocol buffers |