The malaria parasite invades and replicates within red blood cells. The accurate assessment of merozoite invasion and parasitemia is therefore crucial in assessing the course of malaria infection. Here we describe a flow cytometry based protocol for the measurement of these parameters in a mouse model of malaria.
During blood stage infection, malaria parasites invade, mature, and replicate within red blood cells (RBCs). This results in a regular growth cycle and an exponential increase in the proportion of malaria infected RBCs, known as parasitemia. We describe a flow cytometry based protocol which utilizes a combination of the DNA dye Hoechst, and the mitochondrial membrane potential dye, JC-1, to identify RBCs which contain parasites and therefore the parasitemia, of in vivo blood samples from Plasmodium chabaudi adami DS infected mice. Using this approach, in combination with fluorescently conjugated antibodies, parasitized RBCs can be distinguished from leukocytes, RBC progenitors, and RBCs containing Howell-Jolly bodies (HJ-RBCs), with a limit of detection of 0.007% parasitemia. Additionally, we outline a method for the comparative assessment of merozoite invasion into two different RBC populations. In this assay RBCs, labeled with two distinct compounds identifiable by flow cytometry, are transfused into infected mice. The relative rate of invasion into the two populations can then be assessed by flow cytometry based on the proportion of parasitized RBCs in each population over time. This combined approach allows the accurate measurement of both parasitemia and merozoite invasion in an in vivo model of malaria infection.
The clinical symptoms associated with malaria occur during the Plasmodium parasite’s asexual replicative cycle within red blood cells (RBCs). Merozoites, released during the liver stage of infection, quickly attach to and invade RBCs. After gaining entry into the cell, the parasite grows and matures, eventually undergoing schizogony, splitting open the cell, and releasing a cluster of newly formed merozoites which go on to repeat this cycle. As such, an assessment of malaria infection often involves monitoring both parasitemia, which is the percentage of RBCs appropriated by one or more parasites, and the rate of merozoite invasion into uninfected RBCs.
Flow cytometry is a powerful tool which can be used to record the properties of vast numbers of cells in a short period of time. This technique has clear applicability for the measurement of malaria parasitemia and invasion, and offers several advantages over traditional microscopy techniques. These include the accurate measurement of very low parasitemia, which would be prohibitively time consuming by microscopy, the unbiased nature of the measurement, and the ability to measure multiple cell parameters simultaneously. Flow cytometry is widely used to determine both parasitemia and merozoite invasion in in vitro culture1-9, however, techniques for measuring these parameters in vivo are less well developed, and can be complicated by the presence of additional cell types which interfere with analysis. No assays have been described for measurement of in vivo invasion, and while some assays exist for the analysis of in vivo parasitemia, these lack the ability to distinguish between parasitized RBCs (pRBCs) and RBCs containing Howell-Jolly bodies (HJ-RBCs)10-13. The later issue is particularly important as in mice HJ-RBCs may account for up to 0.9% of mature RBCs14-16, thereby preventing the accurate measurement of low parasitemia.
We have previously demonstrated an approach for the measurement of parasitemia and merozoite invasion in a rodent model of malaria infection14. Here, we provide a more detailed protocol and accompanying video. This approach builds on previous methodologies and allows for the accurate identification of parasitized RBCs, as distinct from leukocytes, RBC progenitors, and HJ-RBCs. Additionally, this assay allows the simultaneous measurement of merozoite invasion into two labeled RBC populations, a treated, or target, population, and a control population, thereby providing a robust platform for the assessment of invasion into different cell types.
All procedures were conducted in accordance with the policies of Macquarie University and conformed to the National Health and Medical Research Council (NHMRC) Australian code of practice. The work was performed under the agreement Ethics No ARA 2012/017 approved and obtained from the Animal Ethics Committee at Macquarie University. All experiments were performed on SJL/J mice unless otherwise stated.
1. Mice and Experimental Malaria Infection
2. Labeling of RBCs and Transfusion
3. Collection of Blood Samples and Preparation for Flow Cytometry
4. Flow Cytometry
5. Calculations and Statistics
Measurement of parasitemia.
For the measurement of parasitemia, blood cells should first be selected, and noise, debris and platelets excluded, based on FSC/SSC properties (Figure 2A). Depending on the cytometer used, single cells should then be selected based on either trigger pulse width (Figure 2B), or FSC peak height to area ratio (Figure 2C). Remaining events should consist of leukocytes, stained positive for APC eFluor 780, RBC progenitors (including reticulocytes), stained positive for PerCP eFluor 710, and mature RBCs, negative for both these stains (Figure 2D). After selecting the mature RBC population, events should separate into four populations when JC-1 fluorescence is plotted against Hoechst 33342 (Figure 2E,F) or Hoechst 34580 (Figure 2G,H) fluorescence. The dual positive population represents parasitized RBCs, while the remaining populations are either uninfected RBCs (dual negative), HJ-RBCs (Hoechst positive, JC-1 negative), or unknown cells (JC-1 positive, Hoechst negative). Notably, JC-1 fluorescence may shift from a maximum at 529 nm to a broad emission peaking at 590 nm, depending on the mitochondrial membrane potential of the cell. Regardless of this shift JC-1 will fluoresce strongly in the 530/40 nm channel, making this channel most suitable for analysis. However, in some instances it may be worthwhile to additionally record fluorescence in the 585/42 nm channel, which may provide an indication of the mitochondrial membrane potential of cells. In uninfected samples less than 0.007% of events should be dual positive (Figure 2E,G). This result will depend on the cleanliness of the flow cytometer and may vary considerably, extensive cleaning before analysis may improve results. HJ-RBCs account for 0.3 – 0.9% of mature RBCs, making the addition of the JC-1 dye critical for the accurate measurement of low parasitemia.
Assessment of merozoite invasion.
After injecting labeled RBCs into infected mice the relative invasion rates into the two labeled populations can be determined. Blood samples should be taken and prepared as described for the parasitemia measurement with the addition of Streptavidin PE Cy7. The time at which the sample is taken depends on the experimental conditions and desired outcome of the analysis. In general, an earlier time point will best reflect an invasion phenotype, although it may be beneficial to collect multiple time points to increase accuracy. For the analysis of flow cytometry data, mature RBCs should be selected as in Figure 2. From these cells, Atto 633 and biotin labeled RBCs can be identified based on fluorescence in the 670/30 and 750LP channels respectively (Figure 3A). From here on the three RBC populations (Atto 633, biotin, and unlabeled) should be analyzed separately. In each of these populations parasitemia can be determined based on staining with Hoechst and JC-1 (Figure 3B-D).
Figure 1. Schematic of the in vivo parasite invasion assay. An example of how this assay can be used to determine relative invasion rates in RBCs treated according to the user’s biological question is shown. Blood collected from uninfected mice is divided into two tubes. One tube is treated as desired while the other sample is left untreated (A). Tubes are again divided with one labeled with NHS-Biotin and the other with NHS-Atto 633 (B). Samples are then combined in two combinations; Biotin labeled treated RBCs with Atto 633 labeled untreated RBCs and Atto 633 labeled treated RBCs with Biotin labeled untreated RBCs (C). These two combinations are injected separately into two lots of infected mice during schizogony at 2 – 15% parasitemia (D). A total of 6 recipient mice is recommended to gain statistical significance in the result, although more or less may be used if needed. Adapted from Lelliott et al.14, originally published by BioMed Central.
Figure 2. Measurement of parasitemia by flow cytometry. Debris, noise, and platelets are removed from analysis based on FSC/SSC properties (A). Single cells are then selected from the remaining cells based on either trigger pulse width (B), or FSC peak to area ratio (C). Cell types can then be distinguished based on positive staining with CD45 APC eFluor 780 (leukocytes), CD71 PerCP eFluor 710 (RBC progenitors), or negative staining (mature RBCs) (D). After selecting mature RBCs, cells are either: Hoechst and JC-1 positive (parasitized RBCs), Hoechst positive and JC-1 negative (RBCs containing Howell Jolly bodies), JC-1 positive and Hoechst negative (unknown cells), or dual negative (uninfected RBCs). Uninfected and P. chabaudi infected samples stained with Hoechst 33342 (E,F), or Hoechst 34580 (G,H), are shown. Please click here to view a larger version of this figure.
Figure 3. Assessment of merozoite invasion into two labeled RBC populations in vivo. Plots are of mature RBCs, gated as in Figure 2. The two labeled RBC populations can be selected based on their label (A). Atto 633 labeled cells fluoresce in the 670/30 channel (L1), biotin labeled cells bind to streptavidin and fluoresce in the PE-Cy7 channel (L3), and unlabeled cells are negative for these stains (L4). In each of these populations parasitized RBCs can be identified based on Hoechst and JC-1 positive staining (Q2) (B-D). Please click here to view a larger version of this figure.
We have described a method for the measurement of both parasitemia and merozoite invasion of in vivo samples. In terms of parasitemia measurement, this method offers an advantage over previous methods10-13 in that HJ-RBCs can be distinguished from pRBCs, thereby reducing the number of false positive events. While HJ-RBCs are usually rare in humans, some studies report high levels in mice15,16 making the distinction between these cells and pRBCs important for the accurate measurement of rodent parasitemia. Using this method the limit of detection for parasitemia is approximately 0.007%14, although it is possible to reduce this as low as 0.0005% under the right conditions. Notably, this limit is dictated by the cleanliness of the flow cytometer used and the ability to obtain large numbers of events in a reasonable amount of time. The most common problem associated with the use of this technique is insufficient staining with JC-1. The fluorescence of JC-1 depends on the mitochondrial membrane potential of the parasite, and parasites must be healthy in order to obtain optimal staining. Prolonged storage of parasites or fixation should therefore be avoided before staining.
Care should also be exercised when analyzing parasites which have been subject to drug interventions, as this may also affect the extent of staining with JC-1. In these cases it may be helpful to analyze parasitemia based on Hoechst fluorescence alone, as compared to parasitemia with the addition of the JC-1 dye. Indeed, this may provide a measure of parasite count, as well as an overall indication of parasite health. Finally, the JC-1 dye may shift its fluorescence from a peak at 529 nm to a peak at 590 nm by forming J-aggregates. The formation of these aggregates depends on dye concentration, which in turn depends on the mitochondrial membrane potential of the cell. The loss of mitochondrial membrane potential causes a shift in fluorescence towards 529 nm, which may indicate cells are apoptotic. In our experience pRBCs stained with JC-1 always exhibited a similar fluorescence pattern which was of approximately equal intensity in both the 530/40 nm channel and the 585/42 nm channel. However, in some studies, such as those employing drug interventions, it may be worthwhile to monitor changes in the fluorescence ratio between the 530/40 nm channel and the 585/42 nm channel for any indications of the loss of mitochondrial membrane potential. It is also important to note that JC-1 is particularly susceptible to degradation and should be freshly prepared from a frozen aliquot as described, while freeze/thaw cycles should be avoided. After staining, JC-1 fluorescence is relatively stable with little or no reduction in fluorescence, at least over several hours.
For the in vivo invasion assay, the two most critical factors are consistency in the RBC labeling process and the time of injection of labeled blood. For RBC labeling, the minimum amount of dye should be used to prevent any interference with the ability of the parasite to invade the RBC, which has been raised as a possibility when using surface labels7. Under the labeling conditions described here invasion is not inhibited14, however careful attention should be given to maintaining consistent label concentrations, and dyes should be switched, in order to prevent any inaccuracies due to invasion inhibition by the RBC label. As parasites undergo a synchronized invasion cycle, it is important that labeled cells are injected at the right time in the parasites lifecycle. This should be done in order to maximize the number of invasion events, and therefore the accuracy of the assay. In our experience the peak of invasion occurs approximately halfway through the dark cycle, making a reverse light cycle room advantageous for this assay.
The two label invasion assay offers an accurate method to determine merozoite invasion efficiency into different types of RBC in vivo. This approach therefore allows a comparison between treated RBCs, i.e., trypsinized, and control RBCs. Alternatively, RBCs from genetically modified mice could be compared to those of control mice, or RBCs of different physiological parameters or different age could be compared. While a similar assay has been described for the measurement of invasion in vitro9, the assay here provides the potential to account for effects only present in vivo, including the influence of the immune system, which can potentially alter parasite invasion mechanisms17-19. Finally, this assay also has the potential to provide insights into pathologies such as the immune clearance of pRBCs, and parasite growth, if the pRBCs within the labeled populations are monitored over an extended period.
Overall, a detailed protocol for the accurate measurement of parasitemia in in vivo samples is described, which has an advantage over previous assays in that HJ-RBCs can be distinguished from pRBCs. Furthermore, an assay is described for quantification of invasion efficiency into different RBC types in vivo.
The authors have nothing to disclose.
We acknowledge funding support from the National Health and Medical Research Council (grant APP605524, 490037 and 1047082), the Australian Research Council (grant DP12010061), the National Collaborative Research Infrastructure Strategy of Australia and the Education investment fund from the Department of Innovation, Industry, Science and Research. PML is a recipient of an Australian Postgraduate award.
bisBenzimide H 33342 trihydrochloride | Sigma-Aldrich | B2261 | Hoechst 33342. Store a 4mM stock solution at -20 °C in distilled water |
Hoechst 34580 | Sigma-Aldrich | 63493 | Store a 2mM stock solution at -20 °C in distilled water |
JC-1 Dye | Life Technologies | T-3168 | Store small aliquots of 6mM stock solution at -20 °C in DMSO |
Anti-Mouse CD45 APC-eFluor 780 | eBioscience | 47-0451-80 | Clone 30-F11 |
Anti-Mouse CD71 PerCP-eFluor 710 | eBioscience | 46-0711-80 | Clone R17217 |
Atto 633 NHS ester | Sigma-Aldrich | 1464 | Atto 633-NHS. Store a 2mg/ml stock solution at -20 °C in DMF |
EZ-Link Sulfo-NHS-LC-Biotin | Thermo Fisher Scientific | 21335 | Biotin-NHS. Store a 25mg/ml stock solution at -20 °C in DMF |
Streptavidin PE-Cyanine7 | eBioscience | 25-4317-82 | Streptavidin PE-Cy7 |
Heparin | Sigma-Aldrich | H478 | |
35µM filter cap tubes | Becton Dickinson | 352235 | |
Flow cytometer: BD LSRFortessa | Becton Dickinson | ||
Flow cytometer: BD FACSAria II | Becton Dickinson | ||
Flow cytometer: BD Influx | Becton Dickinson | ||
Flow cytometer: CyAn ADP Analyzer | Beckman Coulter |