Here we describe a detailed protocol for the simultaneous generation of neural precursor cell cultures, as either adherent monolayers or neurospheres, from the subventricular zone and dentate gyrus of individual adult mice.
The neurosphere assay and the adherent monolayer culture system are valuable tools to determine the potential (proliferation or differentiation) of adult neural stem cells in vitro. These assays can be used to compare the precursor potential of cells isolated from genetically different or differentially treated animals to determine the effects of exogenous factors on neural precursor cell proliferation and differentiation and to generate neural precursor cell lines that can be assayed over continuous passages. The neurosphere assay is traditionally used for the post-hoc identification of stem cells, primarily due to the lack of definitive markers with which they can be isolated from primary tissue and has the major advantage of giving a quick estimate of precursor cell numbers in brain tissue derived from individual animals. Adherent monolayer cultures, in contrast, are not traditionally used to compare proliferation between individual animals, as each culture is generally initiated from the combined tissue of between 5-8 animals. However, they have the major advantage that, unlike neurospheres, they consist of a mostly homogeneous population of precursor cells and are useful for following the differentiation process in single cells. Here, we describe, in detail, the generation of neurosphere cultures and, for the first time, adherent cultures from individual animals. This has many important implications including paired analysis of proliferation and/or differentiation potential in both the subventricular zone (SVZ) and dentate gyrus (DG) of treated or genetically different mouse lines, as well as a significant reduction in animal usage.
The neurosphere assay1,2 and the adherent monolayer culture3,4, both developed in the early 1990s, still remain the gold standard in vitro neural stem cell assays. In these assays, primary tissue is micro dissected from a particular brain region, dissociated into a single cell suspension and cultured in the presence of the mitogens epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF2) to form either free-floating clusters (neurospheres) or adherent monolayers. Both systems have a number of advantages and disadvantages and careful consideration should be given to the question that is to be addressed before one or the other system is chosen.
Neurospheres allow a straightforward read-out of differences in precursor cell number and potential. In addition, neurospheres are also a useful tool to study intrinsic specification of the cells when removed from their normal external environment. Extrinsic cues can be studied by simply adding the factor of interest to the growth medium and quantifying the number and size of the neurospheres generated. The major drawback of neurospheres however, is that they form their own niche, with the cells at the center of the neurospheres (particularly large neurospheres) being more differentiated than those on the surface5. Neurospheres contain a mix of stem cells, committed progenitors, and differentiated cells and the cell-cell interactions within the neurospheres counteract the maintenance of the stem cells. This is why neurospheres contain only a small number of true stem cells6-8.
Adherent monolayer cultures also provide a good in vitro system to model in vivo proliferation. Adherent cultures, in which the cells remain more isolated and homogeneous, can eliminate the heterogeneous nature of the neurosphere. Under these growth conditions the precursor cells proliferate rapidly and almost all cells are dividing and express the characteristic neural precursor markers Nestin, Sox2, and BLBP. The major disadvantage of the monolayer culture system compared to the neurosphere assay is that individual precursor-derived clones are unable to be monitored and quantified.
A drawback of most protocols for both types of cultures has been the necessity to use relatively large numbers of animals, because the yield of the isolation strategies has often been poor. At the same time, it has become clear that adult neurogenesis contributes to the individualization of the brain9, resulting in the need for individualized ex vivo models as well. These needs can be met by "one-mouse-one-culture" protocols as described in this report.
The following visual protocol describes the simultaneous generation of neural precursor cultures from both the SVZ and DG of individual animals either as adherent monolayers or as neurospheres. The generation of cultures from individual animals is particularly useful when comparisons between individually treated animals or various individual transgenic or wild-type mice are required. This protocol includes detailed instructions for the simultaneous microdissection of the SVZ and DG regions from adult mice, their dissociation into a single cell suspension, in vitro culture as either adherent monolayer cultures or neurospheres and analysis of multipotentiality and long-term potential, the two cardinal properties of a bone fide stem cell.
1. Basic Setup and Preparation of Culture Medium
2. Harvesting of Adult Mouse Brains and SVZ/DG Microdissections
3. SVZ Tissue Dissociation
4. DG Tissue Dissociation
5. Generation of Adherent Monolayer Cultures
6. Passaging of Adherent Monolayer Cultures
7. Differentiation of Adherent Monolayer Cultures
8. Neurosphere Culture and Quantification
9. Passaging the Neurospheres
After the primary neurospheres have been counted and their size recorded they can be expanded over several passages beginning with either a single neurosphere or a bulk culture.
10. Differentiation of Neurosphere Cultures
Primary or passaged neurospheres can be differentiated to determine multipotentiality.
11. Immunostaining of Neurosphere and Adherent Cultures
Note: For staining with the O4 antibody omit the Triton from the blocking and staining steps and remember to use an appropriate IgM secondary antibody.
Although the two neurogenic regions of the adult mouse brain both contain neural precursor cells, these cells can behave quite differently when cultured in vitro. The adherent monolayer cultures generated from both regions appear morphologically indistinguishable (Figure 1A), however, the SVZ-derived adherent cultures proliferate faster and need to be passaged, on average, 1-2 days earlier than those derived from the DG. As neurospheres, the SVZ-derived precursor cells also proliferate faster and form larger neurospheres (Figure 1B) than the DG-derived precursor cells (Figure 1C). Whilst SVZ-derived neurospheres are typically counted after 6-7 days in culture, DG-derived neurospheres are usually quantified after 10-12 days. In addition, a far greater number of neural precursor cells reside in the SVZ compared to the DG, as evidenced by the almost 10-fold greater number of neurospheres that can be generated from this region (SVZ: 1,173±74.9 vs. DG: 145.3±26.4; p = <0.0001; n = 10 animals per group; Figure 2A).
Studies have shown that the precursor cells within the SVZ and DG respond to different stimuli. The precursor cells in the DG are activated by specific types of spatial learning and by stimuli such as environmental enrichment and physical activity, whereas the SVZ precursor cells are activated by olfactory learning and olfactory enrichment. Consistent with this, one of us (TLW) previously demonstrated that the DG contains a population of latent stem and progenitor cells that can be activated by neural excitation15-18. In contrast, we found that the SVZ precursor cells respond quite differently to this stimulus, with a decrease in neurosphere number in response to depolarizing levels of KCl 17. Here, we have repeated this experiment, plating half of the isolated cells derived from the SVZ and DG of individual animals in depolarizing levels of KCl and the other half in control KCl levels. We demonstrate, as previously, that while the DG precursor cells are activated by depolarization (101.2±17.4 vs. 184.8±12.5, p = 0.005, n = 5 animals), the proliferation of the SVZ-derived cells is in fact significantly decreased (368.0±62.9 vs 266.6±41.6, p = 0.02, n = 5 animals; Figure 2B).
To confirm long-term potential, one of the cardinal features of a true stem cell, single neurospheres or adherent monolayer cultures must be capable of extended expansion i.e. over at least 10 passages. At each passage, following the preparation of a single-cell suspension, the number of cells is counted and the fold expansion is calculated. The theoretical cell total is then calculated by multiplying the fold expansion during that passage by the theoretical total from the previous passage. This is displayed as a line graph with the passage number plotted against the log10 of the theoretical total cell number (see example Figure 3). To confirm multipotentiality, both monolayer cultures and neurospheres can be differentiated by mitogen withdrawal and be shown to give rise to both neurons, and glia (Figure 4).
Figure 1. Adult mouse precursor cells can be cultured as adherent monolayer cultures (A) or as neurospheres (B: SVZ, C: DG). Scale bar is 50 µm. Click here to view larger image.
Figure 2. Significantly more neurospheres are generated from the SVZ compared to the DG of single mice (A). The SVZ and DG precursor cells respond differently to in vitro depolarization (B).
Figure 3. To confirm long-term potentiation, neurospheres are expanded for over 10 passages.
Figure 4. Neurospheres can be differentiated into bIII-tubulin+ neurons (A: red), GFAP+ astrocytes (A: green), O4+ oligodendrocytes (B: red) and Map2ab+ neurons (C: red). Click here to view larger image.
This paper presents a detailed protocol for the initiation of neural precursor cultures, both as adherent monolayers and neurospheres, from the two major neurogenic regions of the adult mouse brain. There are a number of important points that must be kept in mind when attempting either of these in vitro culture systems. Firstly, the choice of dissociation method is very important and is tissue dependent. In our hands, 0.05% trypsin-EDTA is very effective for dissociation of SVZ tissue, and results in a higher number of neurospheres than when using a papain-based dissociation technique. For the dissociation of DG tissue however, we strongly recommend a papain-based dissociation approach. When directly comparing the two dissociation methods on DG tissue, we observed a significantly lower yield of viable cells and approximately 10-fold fewer neurospheres when using trypsin. This difference in dissociation could be due to the difference in tissue composition between the two regions. The compact tissue of the DG is surrounded by extensive neuropil and extensive damage of cellular processes can occur during dissociation.
A second important point to note is that, while the neurosphere assay can be useful to make quantitative statements about the number of precursor cells present in a given tissue sample, some caution must, however, be employed in the interpretation of these absolute numbers. Fusion of neurospheres can be a major confounding factor. Several studies have shown that neurons are highly motile and can fuse, even under what are supposedly ‘clonal’ conditions7,19. The resulting neurosphere frequency can be very dependent on factors including the medium components, the dissection procedure and the dissociation process. Even between experienced handlers some variation in the number of neurospheres generated from supposedly identical samples is evident (see Figure 1A.) More useful, is a direct comparison of the precursor frequency between two given samples (i.e. control vs. treated or wild-type vs. knock-out) handled by the same person within a single experiment, rather than a quantitative statement of total precursor cell number.
When deciding which of the two culture methods is most suited for a particular experiment it is important to note that these two culture systems differ in the homogeneity of the cell types generated. In comparison to proliferating adherent cell cultures, which show a fairly homogeneous precursor cell pool (~98% of cells are Sox2+)20, neurospheres are more heterogeneous and contain, as well as proliferating precursor cells, differentiated neurons, and astrocytes21,22. It is important that the neurospheres are not cultured for extended periods between passages as the larger the neurosphere become the more likely it is to find differentiated cell types in their core.
We traditionally initiate adherent monolayer neural precursor cultures from the DG tissue of between 5-8 mice. Therefore, when attempting to establish the adherent monolayer cultures from the DG or SVZ of a single mouse, the utmost care needs to be taken during the tissue dissociation procedure in order to avoid excessive cell death caused by over triturating of the tissue, or taking extended periods of time between the dissection and final culturing steps. This protocol describes, for the first time, the generation of adherent monolayer precursor cultures from both the SVZ and DG of individual animals. There are many instances when the comparison of precursor proliferation and differentiation needs to be made on a single animal basis. These include the ability to directly compare the DG and SVZ of individual animals using paired statistics and to pair culture data with individual behavioral or physiological data9. Single animal cultures also allow the use of rare transgenic animals, where age-matching a pool of 5-8 donors per culture is not possible, as well as unique animals (e.g. F2 crosses or out bred animals) for genetic association studies.
The authors have nothing to disclose.
TLW was supported by a Marie Curie International Incoming Fellowship. This work was also financed from basic institutional funding, Bundesministerium für Bildung and Forschung (BMBF) funding and partly with support from Priority Research Program (SFB) 655 to GK. The authors would like to thank Anne Karasinsky for care and maintenance of all animals used in this study and Odette Leiter, Susann Ruhwald, Fanny Boehme, and Richard Wetzel for cell culture and microscopy assistance.
CONSUMABLES | |||
poly-D-lysine | Sigma | P7280-5MG | |
laminin | Roche | 11243217001 | |
glass pastuer pipettes | Volac | BS5732 | |
DMEM:F12 (1:1) 1X | Life Technologies | 21331-020 | |
Neural Basal Medium (1X) | Life Technologies | 21103-049 | |
B27 supplements (50X) | Life Technologies | 17504-044 | |
Glutamax | Life Technologies | 35050-038 | |
Heparain | Sigma | H3393 | |
Penacillin/Streptomycin | Life Technologies | 15140-122 | |
EGF | PeproTech | AF-100-15 | |
bFGF | PeproTech | 100-18B | |
0.05% trypsin-EDTA | Life Technologies | 25300-054 | |
trypsin inhibitor | Sigma | T6522 | |
DNaseI | Roche | 10104159001 | |
Accutase | PAA | L11-007 | |
Papain | Worthington | LS003120 | |
Dispase | Life Technologies | 17105-041 | |
Percoll | GE Healthcare | 17-0891-02 | |
HBSS (with Calcium & Magnesium) | Life Technologies | 14025-050 | |
Glucose | Roth | X997.2 | |
HEPES | Sigma | H3375-500G | |
NaHCO3 | Merck | K39347429847 | |
1mL syringes | Braun | 2016-10 | |
27 Gauge needles | Braun | 4657705 | |
scalpels (#22 disposable) | Braun | BA222 | |
Dumont #7 forceps | FST | 11271-30 | |
Dumont 5/45 forceps | FST | 11251-35 | |
scissors | FST | 14060-10 | |
Iris spatula | FST | 10093-13 | |
70% ethanol | |||
PBS | Life Technologies | 14040-091 | |
flasks/well plates | TPP | 92696 | |
PFA (4%) | Sigma | P6148 | |
hemocytometer | Marienfeld | 650010 | |
trypan blue (0.4%) | Sigma | T8154 | |
NDS | Millipore | 530 | |
TritonX-100 | Sigma | T9284 | |
mouse monoclonal bIII-tubulin antibody | Promega | G712A | |
rabbit polyclonal glial fibrillary acidic protein antibody | Dako | 20334 | |
O4 | R & D systems | MAB1326 | |
Map2a+b | Sigma | M1406 | |
donkey anti-mouse Cy3 antibody | Jackson ImmunoResearch | 715-505-151 | |
donkey anti-rabbit Alexa488 | Dianova | 711-545-152 | |
4,6-diamidino-2-phenylindole (DAPI) | Invitrogen | 861405 | |
Aqua Polymount | Polysciences Inc | 18606 | |
10 ml Combi tips | eppendorf | 30089677 | |
plastic 10ml and 25mL serological pipettes | Corning | 4488/4489 | |
EQUIPMENT | |||
Pipetboy | Integra biosciences | 521942 | |
multidoser pipette | eppendorf | ||
37C waterbath | |||
dissecting microscope | |||
37C:5%Co2 incubator | |||
centrifuge | eppendorf | 5810R |